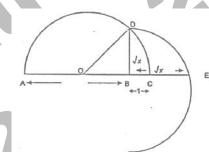
# 1.3 IRRATIONAL NUMBER

## GEOMETRICAL REPRESENTATION OF REAL NUMBERS

To represent any real number of number line we follows the following steps:

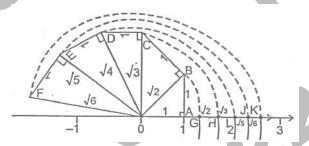
- STEP I : Obtain the positive real number x (say).
- STEP II: Draw a line and mark a point A on it.
- STEP III : Mark a point B on the line such that AB = x units.
- STEP IV: From point B mark a distance of 1 unit and mark the new point as C.
- STEP V: Find the mid point of AC and mark the point as O.
- STEP VI: Draw a circle with centre O and radius OC.
- STEP VII: Draw a line perpendicular to AC passing through B and intersecting the semi circle at D.
- Length BD is equal to  $\sqrt{x}$ .



# (c) Irrational Number on a Number Line:

**Ex.16** Plot  $\sqrt{2}$ ,  $\sqrt{3}$ ,  $\sqrt{5}$ ,  $\sqrt{6}$  on a number line.

Sol.



#### **Another Method for:**

(i) Plot 
$$\sqrt{2}$$
,  $\sqrt{3}$ 

So, OC = 
$$\sqrt{2}$$
 and OD =  $\sqrt{3}$ 

(ii) Plot 
$$\sqrt{5}$$
,  $\sqrt{6}$ ,  $\sqrt{7}$   $\sqrt{8}$ 

$$OC = \sqrt{5}$$

OD = 
$$\sqrt{6}$$
 OH =  $\sqrt{7}$  ......



## (d) Properties of Irrational Number:

- (i) Negative of an irrational number is an irrational number e.g.  $-\sqrt{3} \sqrt[4]{5}$  are irrational.
- (ii) Sum and difference of a rational and an irrational number is always an irrational number.
- (iii) Sum and difference of two irrational numbers is either rational or irrational number.
- (iv) Product of a non-zero rational number with an irrational number is either rational or irrationals
- (v) Product of an irrational with a irrational is not always irrational.
- **Ex.17** Two number's are 2 and  $\sqrt{3}$ , then

Sum =  $2 + \sqrt{3}$ , is an irrational number.

Difference =  $2 - \sqrt{3}$ , is an irrational number.

Also  $\sqrt{3} - 2$  is an irrational number.

**Ex.18** Two number's are 4 and  $\sqrt[3]{3}$ , then

Sum =  $4 + \sqrt[3]{3}$ , is an irrational number.

Difference =  $4 - \sqrt[3]{3}$ , is an irrational number.

**Ex.19** Two irrational numbers are  $\sqrt{3}$ ,  $-\sqrt{3}$ , then

Sum =  $\sqrt{3} + (-\sqrt{3}) = 0$  which is rational.

Difference =  $\sqrt{3} - (-\sqrt{3}) = 2\sqrt{3}$ , which is irrational.

**Ex.20** Two irrational numbers are  $2 + \sqrt{3}$  and  $2 - \sqrt{3}$ , then

Sum =  $(2 + \sqrt{3}) + (2 - \sqrt{3}) = 4$ , a rational number

Two irrational numbers are  $\sqrt{3} + 3m\sqrt{3} - 3$ 

Difference =  $\sqrt{3} + 3 - \sqrt{3} + 3 = 6$ , a rational number

**Ex.21** Two irrational numbers are  $\sqrt{3} - \sqrt{2}, \sqrt{3} + \sqrt{2}$ , then

Sum =  $\sqrt{3} - \sqrt{2} + \sqrt{3} + \sqrt{2} = 2\sqrt{3}$ , an irrational

**Ex.22** 2 is a rational number and  $\sqrt{3}$  is an irrational.

 $2 \times \sqrt{3} = 2\sqrt{3}$ , an irrational.

**Ex.23** 0 a rational and  $\sqrt{3}$  an irrational.

 $0 \times \sqrt{3} = 0$ , a rational.

Ex.24  $\frac{4}{3} \times \sqrt{3} = \frac{4}{3}\sqrt{3} = \frac{4}{\sqrt{3}}$  is an irrational.

Ex.25  $\sqrt{3} \times \sqrt{3} = \sqrt{3 \times 3} = \sqrt{9} = 3$  a rational number.



Ex.26  $2\sqrt{3} \times 3\sqrt{2} = 2 \times 3\sqrt{3 \times 2} = 6\sqrt{6}$  and irrational number.

**Ex.27**  $\sqrt[3]{3} \times \sqrt[3]{3^2} = \sqrt[3]{3 \times 3^2} = \sqrt[3]{3^3} = 3$  a rational number.

**Ex.28**  $(2+\sqrt{3})(2-\sqrt{3})=(2)^2-(\sqrt{3})^2=4-3=1$  a rational number.

Ex.29 
$$(2 + \sqrt{3})(2 + \sqrt{3}) = (2 + \sqrt{3})^2$$
  
=  $(2)^2 + (\sqrt{3})^2 + 2(2) \times (\sqrt{3})$   
=  $4 + 3 + 4\sqrt{3}$   
=  $7 + 4\sqrt{3}$  an irrational number

### NOTE:

(i)  $\sqrt{-2} \neq -\sqrt{2}$ , it is not a irrational number.

(ii) 
$$\sqrt{-2} \times \sqrt{-3} \neq \left(\sqrt{-2 \times -3} = \sqrt{6}\right)$$

Instead  $\sqrt{-2}$ ,  $\sqrt{-3}$  are called Imaginary numbers.

$$\sqrt{-2} = i\sqrt{2}$$
, where i ( = iota) =  $\sqrt{-1}$ 

$$\therefore (A) i^2 = -1$$

(B) 
$$i^3 = i^2 \times i = (-1) \times i = -i$$

(C) 
$$i^4 = i^2 \times i^2 = (-1) \times (-1) = 1$$

(iii) Numbers of the type (a + ib) are called complex numbers where (a, b)  $\in$  R.e.g. 2 + 3i, -2 + 4i, -3i, 11 - 4i, are complex numbers.



## **EXERCISE 1.2**

- **4.** Examine whether the following numbers are rational or irrational:
  - (i)  $(2-\sqrt{3})^2$
- (ii)  $\left(\sqrt{2} + \sqrt{3}\right)^2$
- (iii)  $(3+\sqrt{2})(3-\sqrt{2})$
- (iv)  $\frac{\sqrt{3}-1}{\sqrt{3}+1}$

- 5. Represent  $\sqrt{8.3}$  on the number line.
- **6.** Represent  $(2 + \sqrt{3})$  on the number line.
- 7. Prove that  $(\sqrt{2} + \sqrt{5})$  is an irrational number.
- 8. Prove that  $\sqrt{7}$  is not a rational number.
- 9. Prove that  $(2 + \sqrt{2})$  is an irrational number.
- 10. Multiply  $\sqrt{27a^3b^2c^4} \times \sqrt[3]{128a^7b^9c^2} \times \sqrt[6]{729ab^{12}c^2}$ .
- 11. Express the following in the form of p/q.
  - (i)  $0.\overline{3}$
- (ii) 0.<del>37</del>
- (iii) 0.<del>54</del>
- (iv)  $0.\overline{05}$
- $(v) 1.\overline{3}$
- (vi) 0.<del>621</del>

**12.** Simplify:  $0.\overline{4} + .01\overline{8}$ 

