CHAPTER - 11 **CONSTRUCTIONS**

11.1 BASIC CONSTRUCTIONS

TO CONSTRUCT THE BISECTOR OF A LINE SEGMENT

- **Ex.1** Draw a line segment of length 7.8 cm draw the perpendicular bisector of this line segment.
- Given the given the segment be AB = 7.8 cm. Sol. STEPS:
 - (i) Draw the line segment AB = 7.8 cm.
 - (ii) With point A as centre and a suitable radius, more than half the length of AB, draw arcs on both the sides of AB.
 - (iii) With point B as centre and with the same radius draw arcs on both the sides of AB. Let these arc cut at points P & Q as shown on in the figure.
 - (iv) Draw a line through the points P and Q. The line so obtained is the required perpendicular bisector of given line segment AB.

Line PQ is perpendicular bisector of AB.

- (A) PQ bisects AB i.e., OA = OB.
- (B) PQ is perpendicular to AB i.e., $\hat{e}PAO = \hat{e}POB = 90^{\circ}$.

Proof: In \triangle APQ and \triangle BPQ:

$$AP = BP$$

$$AQ = BQ$$

$$PQ = PQ$$

$$AAPQ = \angle BPQ$$

$$AAPQ = \angle BPQ$$

$$APQ = \angle BPQ$$

$$APQ = \angle BPQ$$

$$APQ = \angle BPQ$$

$$By cpctc$$

$$By cpctc$$

$$AP = BP$$

$$OP = OP$$

$$\Rightarrow \Delta APO \cong \Delta BPO$$

And,
$$\angle POA = \angle POB$$

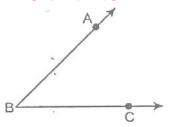
$$=\frac{180^0}{2}=90^0$$

$$[\because \angle POA + \angle POB = 180^{0}]$$

⇒ PQ is perpendicular bisector of AB.

TO CONSTRUUT THE BISECTOR OF A GIVEN ANGLE

Let ABC be the given angle to be bisected.



STEPS:

- (i) With B as centre and a suitable radius, draw an arc which cuts ray BA at point D and ray BC at point E.
- (ii) Taking D and E as centres and with equal radii draw arcs which intersect each other at point F. In this step, each equal radius must be more than half the length DE.
- (iii) Join B and F and produce to get the ray BF.

Ray BF is the required bisector of the given angle ABC.

Proof: Join DF and EF.

In \triangle BDF and \triangle BEF:

$$BF = BF$$
 [Common]

$$\Rightarrow \Delta BDF \cong \Delta BEF$$
 [By SSS]

$$\Rightarrow \angle DBF = \angle EBF$$
 [By cpctc]

i.e.,
$$\angle ABF = \angle CBF$$

⇒ BF bisects ∠ABC. Hence Proved.

(a) To Construct the Required Angle of 60°:

STEPS:

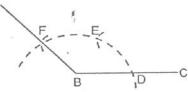
- (i) Draw a line BC of any suitable length.
- (ii) With B as centre and any suitable radius, draw an arc which cuts BC at point D.
- (iii) With D as centre and radius same, as taken in step (ii), draw one more arc which cuts previous arc at point E.
- (iv) Join BE and produce upto any point A.

Then,
$$\angle ABC = 60^{\circ}$$

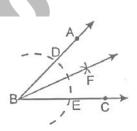
(b) To Construct an Angle of 120°: STEPS

- (i) Draw a line BC of any suitable length.
- (ii) Taking B as centre and with any suitable radius, draw an arc which cuts BC at point D.
- (iii) Taking D as centre, draw an arc of the same radius, as taken in step (ii), which cuts the first arc at point E.
- (iv) Taking E as centre and radius same, as taken in step (ii), draw one more arc which cuts the first arc at point F.
- (v) Join BF and produce upto any suitable point A.

Then, $\angle ABC = 120^{\circ}$



1 D



(c) To Construct and Angle of 30° :

STEPS:

- (i) Construct angle ABC = 60° by compass.
- (ii) Draw BD, the bisector of angle ABC.

The, $\angle DBC = 30^{\circ}$

(d) To Construct an Angle of 90° :

STEPS

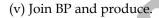
- (i) Construct angle ABC = 120.0 by using compass.
- (ii) Draw PB, the bisector of angle EBG.

Then, $\angle PBC = 90^{\circ}$

Alternative Method:

- (i) Draw a line segment BC of any suitable length.
- (ii) Produce CB upto a arbitrary point O.
- (iii) Taking B as centre, draw as arc which cuts OC at points D and E.
- (iv) Taking D and E as centres and with equal radii draw arcs with cut each other at point P.

[The radii in this step must be of length more than half of DE.]



Then, $\angle PBC = 90^{\circ}$

(d) To Construct an Angle of 45°

STEPS

- (i) Draw $\angle PBC = 90^{\circ}$
- (ii) Draw AB which bisects angle PBC,

Then, $\angle ABC = 45^{\circ}$

Alternative Method:

STEPS:

- (i) Construct $\angle ABC = 60^{\circ}$
- (ii) Draw BD, the bisector of angle ABC.
- (iii) Draw BE, the bisector of angle ABD.

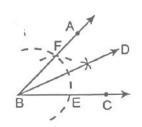
Then, \angle EBC = 45°

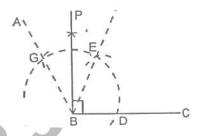
(e) To Construct an Angle of 1050:

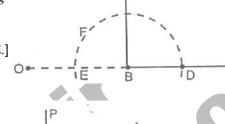
STEPS:

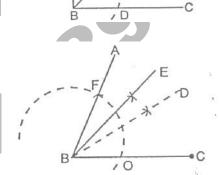
- (i) Construct $\angle ABC = 120^{\circ}$ and $\angle PBC = 90^{\circ}$
- (ii) Draw BO, the bisector of ∠ABP.

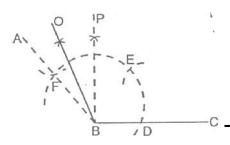
Then, \angle OBC = 105°











(f) To Construct an Angle of 150°.

STEPS:

- (i) Draw line segment BC of any suitable length. Produce CB upto any point O.
- (ii) With B as centre, draw an arc (with any suitable radius) which buts OC at points D and E.
- (iii) With D as centre, draw an arc of the same radius, as taken in step 2, which cuts the first arc at point F.
- (iv) With F as centre, draw one more arc of the same radius, staken in step 2, which cuts the first arc at point G.
- (v) Draw PB, the bisector of angle EBG.

Now
$$\angle$$
FBD = \angle GBF = \angle EBG = 60°

Then, $\angle PBC = 150^{\circ}$

(g) To Construct an Angle of 135°.

STEPS:

- (i) Construct $\angle PBC = 150^{\circ}$ and $\angle GBC = 120^{\circ}$
- (ii) Construct BQ, the bisector of angle PBG.

Then,
$$\angle QBC = 135^{\circ}$$

