14.6 MEASURES OF CENTRAL TENDENCY

The commonly used measure of central tendency are -

- (i) Mean
- (ii) Median
- (iii) Mode
- (a) Mean:

The mean of a number of observation is the sum of the values of all the observations divided by the total number of observations. It is denoted by the symbol \bar{x} , read as x bar.

- (i) properties of mean:
- (a) If a constant real number 'a' is added to each of the observation than new mean will be $\bar{x} + a$.
- (b) If a constant real number 'a' is subtracted from each of the observation then new mean will be \bar{x} a
- (c) If a constant real number 'a' is multiplied with each of the observation then new mean will be \bar{x}
- (d) If each of the observation is dived by a constant no 'a' then new mean will be $\frac{x}{a}$.
- (ii) Mean of ungrouped data: If x_1 , x_2 , x_3 ,...., x_n are then n values (or observations) then A.M. (Arithmetic mean) is

$$\bar{x} = \frac{x_1 + x_1 + \dots + x_n}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$nx = \text{Sum of observation} = \sum_{i=1}^{n} x_i$$

i.e. product of means & no. of items given sum of observation.

- **Ex.9** Find the mean of the factors of 10
- **Sol.** factors of 10 are 1,2,5 & 10.

$$\bar{x} = \frac{1+2+5+10}{4} = \frac{18}{4} = 4.5$$

Ex.10 If the mean of 6,4,7 P and 10 is 8 find P

Sol.
$$8 = \frac{6+4+7+P+10}{5} \Rightarrow P = 13 \Rightarrow P = 13$$

(iii) Method for Mean of ungrouped frequency distribution.

Xi	$\mathbf{f_i}$	$f_i x_i$

X 1	f_1	f_1x_1
x ₂ x ₃	$egin{array}{c} f_1 \ f_2 \ f_3 \end{array}$	$\begin{array}{c} f_1x_1 \\ f_2x_2 \\ f_3f_3 \end{array}$
	•	•
•	•	•
x _n	f_n	$f_n x_n$
	$\sum f_i =$	$\sum f_i x_i =$

Then mean
$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$$

(iv) Method for Mean of grouped frequency distribution.

Ex.11 (1) Direct Method: for finding mean

Marks	No. of students fi	mid values xi	fixi
10 - 20	6	15	90
20 - 30	8	25	200
30 - 40	13	35	455
40 - 50	7	45	315
50 - 60	3	55	165
60 - 70	2	65	130
70 - 80	1	75	75
	$\sum f_1 = 40$		$\sum f_i x_i = 40$

$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} \frac{1430}{40} = 35.75$$

(v) Combined Mean:

$$\bar{x} = \frac{n_1 \bar{x}_1 + n_2 + \bar{x}_2 + \dots}{n_1 + n_2 + \dots}$$

(vi) Uses of Arithmetic Mean

- (A) It is used for calculating average marks obtained by a student.
- (B) It is extensively used in practical statistics.
- (C) It is used to obtain estimates.
- (D) It is used by businessman to find out profit per unit article, output per machine, average monthly income and expenditure etc.

(b) Median:

Median of a distribution is the value of the variable which divides the distribution into two equal parts.

(i) Median or ungrouped data

- (A) Arrange the data in ascending order.
- (B) Count the no. of observations (Let there be 'n' observations)
- (C) If n is odd then median = value of $\left(\frac{n+1}{2}\right)^{th}$ observation.
- (D) If n is even the median = value of mean of $\left(\frac{n}{2}\right)^{th}$ observation and $\left(\frac{n}{2}+1\right)^{th}$ observation.

Ex.12 Find the median of the following values:

Sol. Arranging the data in ascending order, we have

Here the number of observations n = 9 (odd)

∴ Median = Value of
$$\left(\frac{9+1}{2}\right)^{th}$$
 observation
= Value of 5th observation
= 39.

- **Ex.13** The median of the observation 11, 12, 14, 18, x + 2, x + 4, 30, 32, 35, 41 arranged in ascending order is 24. Find the value of x.
- **Sol.** Here, the number of observations n = 10. Since n is even, therefore

$$Median = \frac{\left(\frac{n}{2}\right)^{th} conservation + \left(\frac{n}{2} + 1\right)^{th} observation}{2}$$

$$\Rightarrow 24 = \frac{5^{th} \text{ observation} + 6^{th} \text{ observation}}{2}$$

$$\Rightarrow 24 = \frac{(x+2) + (x+4)}{2}$$

$$\Rightarrow 24 = \frac{2x+6}{2} \Rightarrow 24 = x+3 \Rightarrow x = 21.$$

Hence, x = 21

- (ii) Uses of Median:
- (A) Median is the only average to be used while dealing with qualitative data which cannot be measured quantitatively but can be arranged in ascending or descending order or magnitude.
- (B) It is used for determining the typical value in problems concerning wages, distribution of wealth etc.
- (c) Mode:
- (i) Mode or ungrouped data (By inspection only): Arrange the data in an array and then count the frequencies of each variate. The variate having maximum frequency is the mode.
- Ex.13 Find the mode of the following array of an individual series of scores 7, , 10, 12, 12, 12, 11, 13, 13, 17.

Number	7	10	11	12	13	17
Frequency	2	1	1	3	2	1

- ∴ Mode is 12
- (ii) Uses of Mode: Mode is the average to be used to find the ideal size, e.g., in business forecasting, in manufacture of ready-made garments, shoes etc.
- (c) Empirical Relation between Mode, Median & Mean:

Mode = 3 Median - 2 Mean

