4.2 GRAPH OF A LINEAR EQUATION

(A) in order to draw the graph of a linear equation in one variable we may follow the following algorithm.

Step I: Obtain the linear equation.

Step II: If the equation is of the form ax = b, $a \ne o$, then plot the point $\left(\frac{b}{a}, 0\right)$ and one more point $\left(\frac{b}{a}, \alpha\right)$

when α is any real number. If the equation is of the form ay = b, $a \neq 0$, then plot the point $\left(0, \frac{b}{a}\right)$ and

 $\left(\beta, \frac{b}{a}\right)$ where β is any real number.

Step III: Joint the points plotted in step II to obtain the required line.

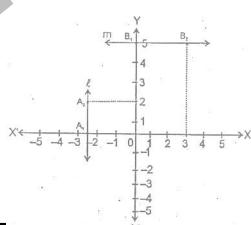
NOTE:

If eq. is in form ax = b then we get a line parallel to Y-axis and if eg. is in form ay = b then we get a line parallel to X-axis.

Ex.4 Draw the graph of

(i)
$$2x + 5 = 0$$
 (ii) $3y - 15 = 0$

Sol. (i) Graph of 2x + 5 = 0


On simplifying it we get $2x = -5 \Rightarrow x = -\frac{5}{2}$

First we plot point $A_1\left(-\frac{5}{2},0\right)$ & then we plot any other point $A_2\left(-\frac{5}{2},2\right)$ on the graph paper, then we join these two points we get required line ℓ as shown in figure below.

(ii) Graph of 3y - 15 = 0

On simplifying it we get $3u = 15 \Rightarrow y = \frac{15}{3}f = 5$.

First we plot the point B_1 (0, 5) & then we plot any other point B_2 (3, 5) on the graph paper, then we join these two points we get required line m as shown in figure.

NOTE:

A point which lies on the line is a solution of that equation. A point not lying on the line is not a solution of the equation.

(B) In order to draw the graph of a linear equation ax + by + c = 0 may follow the following algorithm.

Step I: Obtain the linear equation ax + by + c = 0.

Step II : Express y in terms of x i.e. $y = -\left(\frac{ab+c}{b}\right)$ or x in terms of y i.e. $x = -\left(\frac{by+c}{a}\right)$.

Step III : Put any two or three values for x or y and calculate the corresponding values of y or x respectively from the expression obtained in Step II. Let we get points as $(\alpha_1, \beta_1), (\alpha_2, \beta_2), (\alpha_3, \beta_3)$.

Step IV: Plot the points $(\alpha_1, \beta_1), (\alpha_2, \beta_2), (\alpha_3, \beta_3)$ on graph paper.

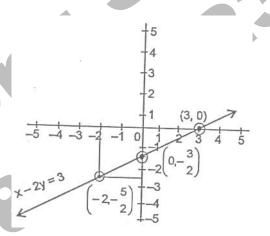
Step V: Joint the pints marked in step IV to obtain. The line obtained is the graph of the equation ax + by + c = 0.

Ex.5 Draw the graph of the line x - 2y = 3, from the graph find the coordinate of the point when

(i)
$$x = -5$$

(ii)
$$y = 0$$

Sol. Here given equation is
$$x - 2y = 3$$
.


Solving it for y we get $2y = x - 3 \Rightarrow y = \frac{x - 3}{2}$

Let
$$x = 0$$
, then $y = \frac{0-3}{2} = \frac{-3}{2}$

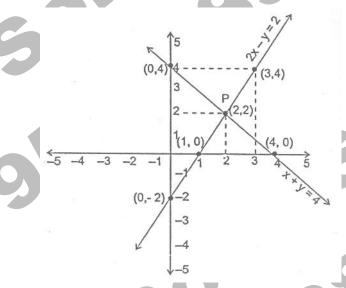
$$x = 3$$
, then $y = \frac{3-3}{2} = 0$

$$x = -2$$
, then $y = \frac{-2 - 3}{2} = \frac{-5}{2}$ Hence we get

x	0	3	-2
у	$-\frac{3}{2}$	0	$-\frac{5}{2}$

Clearly when x = -5 then y = -4 and when y = 0 then x = 3.

- **Ex.6** Draw the graphs of the lines represented by the equations x + y = 4 and 2x y = 2 in the same graph. Also find the coordinate of the point where the two lines intersect.
- **Sol.** Given equations are


$$x + y = 4$$
(i) & $2x - y = 2$ (ii)

(i) We have y = 4 - x

x	0	2	4
y	4	2	0

(ii) We have y = 2x - 2

х	1	0	3
у	0	-2	4

By drawing the lines on a graph paper, clearly we can say that P is the point of intersection where coordinates are x = 2, y = 2