
## 6.2 IMPORTANT THEOREMS

**Theorem 1:** If two lines intersect each other, then the vertically opposite angles are equal.

**Given:** Two lines AB and CD intersecting at a point O.



**To prove :** (i)  $\angle AOC = \angle BOD$ 

(ii) 
$$\angle BOC = \angle AOD$$

**Proof:** Since ray OD stands on AB

$$\therefore \angle AOD + \angle DOB = 180^0 \qquad \dots (i)$$

roy OA stands on CD

again, ray OA stands on CD

$$\therefore$$
  $\angle AOC + \angle AOD = 180^{\circ}$  ...(ii)

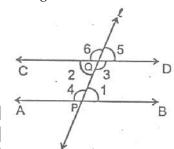
by (i) & (ii) we get

$$\angle AOD + \angle DOB = \angle AOC + \angle AOD$$

$$\Rightarrow$$
  $\angle$ DOB =  $\angle$ AOC

$$\Rightarrow \angle AOC = \angle DOB$$

Similarly we can prove that  $\angle BOC = \angle DOA$ 


Hence Proved.

**Theorem 2**: If a transversal intersects two parallel lines, then each pair of alternate interior angles is equal.

[linear pair]

[linear pair]

**Given :** AB and CD are two parallel lines, Transversal *I* intersects AB and CD at P and Q respectively making two pairs of alternate interior angles,  $\angle 1$ ,  $\angle 2 \& \angle 3$ ,  $\angle 4$ .



**To prove :**  $\angle 1 = \angle 2$  and  $\angle 3 = \angle 4$ 

**Proof :** Clearly,  $\angle 2 = \angle 5$  [Vertically opposite angles]

And,  $\angle 1 = \angle 5$  [Corresponding angles]

∴ ∠1 = ∠2

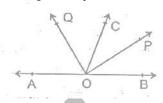
Also,  $\angle 3 = \angle 6$  [Vertically opposite angles]

And,  $\angle 4 = \angle 6$  [Corresponding angles]

 $\therefore$   $\angle 3 = \angle 4$  Hence, Proved.

## **ILLUSTRATIONS**

- **Ex.1** Two supplementary angles are in ratio 4 : 5, find the angles,
- **Sol.** Let angles are 4x & 5x.
  - :. Angles are supplementary
  - $\therefore$  4x + 5x = 180<sup>0</sup>  $\Rightarrow$  9x = 180<sup>0</sup>
  - $\Rightarrow x = \frac{180^0}{9} = 20^0$
  - $\therefore$  Angles are  $4 \times 20^{\circ}$ ,  $5 \times 20^{\circ} \Rightarrow 80^{\circ} \& 100^{\circ}$
- Ans.
- **Ex.2** If an angle differs from its complement by 10, find the angle.
- **Sol.** let angles is  $x^0$  then its complement is  $90 x^0$ .


Now given 
$$x^0 - (90 - x^0) = 10$$

$$\Rightarrow x^0 - 90^0 + x^0 = 10$$

$$\Rightarrow$$
 2x<sup>0</sup> = 10 + 90 = 100

$$\Rightarrow x^0 = \frac{100^0}{2} = 50^0$$

- $\therefore$  Required angle is 50°.
- Ans.
- **Ex.3** In figure, OP and OQ bisects  $\angle$ BOC and  $\angle$ AOC respectively. Prove that  $\angle$ POQ = 90 $^{\circ}$ .



- **Sol.** ∴ OP bisects ∠BOC
  - $\therefore \angle POC = \frac{1}{2} \angle BOC$

Also OQ bisects ∠AOC

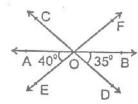
$$\therefore \angle COQ = \frac{1}{2} \angle AOC$$

- ∴ OC stands on AB
- $\therefore$   $\angle AOC + \angle BOC = 180^{\circ}$

[Linear pair]

$$\Rightarrow \frac{1}{2} \angle AOC + \frac{1}{2} \angle BOC = \frac{1}{2} \times 180^{0}$$

 $\Rightarrow \angle COQ + \angle POC = 90^{\circ}$ 


[Using (i) & (ii)]

 $\Rightarrow \angle POQ = 90^{\circ}$ 

[By angle sum property]

Hence Proved.

**Ex.4** In figure, lines AB, CD and EF intersect at O. Find the measures of ∠AOC, ∠DOE and ∠BOF



**Sol.** Given  $\angle AOE = 40^{\circ} \& \angle BOD = 35^{\circ}$ 

Clearly  $\angle AOC = \angle BOD$ 

$$\Rightarrow \angle AOC = 35^{\circ}$$

Ans.

Ans.

$$\angle BOF = \angle AOE$$

 $\Rightarrow$   $\angle BOF = 40^{\circ} Ans.$ 

Now,  $\angle AOB = 180^{\circ}$ 

 $\Rightarrow \angle AOC + \angle COF + \angle BOF = 180^{\circ}$ 

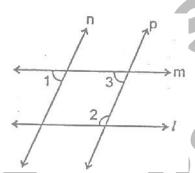
 $\Rightarrow$  35<sup>0</sup> +  $\angle$ COF + 40<sup>0</sup> = 180<sup>0</sup>

 $\Rightarrow$   $\angle COF = 180^{\circ} - 75^{\circ} = 105^{\circ}$ 

Now,  $\angle DOE = \angle COF$ 

∴ ∠DOE = 105°

[Vertically opposite angles]


[Vertically opposite angles]

[Straight angles]

[Angles sum property]

[Vertically opposite angles]

Ex.5 In figure if I | m, n | p and  $\angle 1 = 85^{\circ}$  find  $\angle 2$ 



**Sol.**  $\therefore$   $n \parallel p$  and m is transversal

$$\therefore \quad \angle 1 = \angle 3 = 85^0$$

Also  $m \parallel I \& p$  is transversal

$$\therefore$$
  $\angle 2 + \angle 3 = 180^{\circ}$ 

$$\Rightarrow$$
  $\angle 2 + 85^0 = 180^0$ 

$$\Rightarrow \angle 2 + 180^{\circ} - 85^{\circ}$$

$$\Rightarrow$$
  $\angle 2 = 95^{\circ}$ 

Ans.

[Corresponding angles]

[ : Consecutive interior angles]