Chapter 7

ASSIGNMENT

OBJECTIVE EX. 7.1

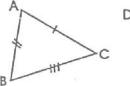
_	T .1 .1	1 1			1 .1		
1.	In the three	altitudes	of a Δ	are equa	I then	triang	le is

- (A) isosceles
- (B) equilateral
- (C) right angled
- (D) none
- 2. ABCD is a square and P, Q, R are points on AB, BC and CD respectively such that AP = BQ = CR and \angle PQR = 90°, then \angle QPR
 - $(A) 45^0$
- (B) 50°

- $(C) 60^{\circ}$
- (D) LM
- 3. In a ΔXYZ , LM | YZ and bisectors YN and ZN of $\angle Y \& \angle Z$ respectively meet at N on LM then YL + ZM =
 - (A) YZ
- (B) XY

- (C) XZ
- (D) LM

- **4.** In a ΔPQR, PS is bisector of \angle P and \angle Q = 70° \angle R = 30°, then
 - (A) QS > PQ > PR
- (B) QS < PQ < PR
- (C) PQ > QS > SR
- (D) PQ < QS < SR


- 5. If D is any point on the side BC of a \triangle ABC, then:
 - (A) AB + BC + CA > 2AD

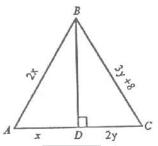
(B) AB + BC + CA < 2AD

(C) AB + BC + CA > 3AD

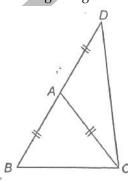
(D) None

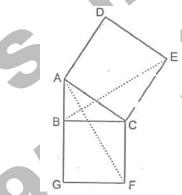
6. For given figure, which one is correct:

- (A) $\triangle ABC \cong \triangle DEF$
- (B) $\triangle ABC \cong \triangle FED$
- (C) $\triangle ABC \cong \triangle DFE$
- (D) $\triangle ABC \cong \triangle EDF$
- 7. In a right angled triangle. One acute angle is double the other then the hypotenuse is:
 - (A) Equal to smallest side


(B) Double the smallest side

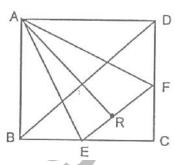
(C) Triple the smallest side


(D) None of these


1. In the $\triangle ABC$ given below, BD bisects $\angle B$ and is perpendicular to AC. If the lengths of the sides of the triangle are expressed in terms of x and y as shown, find the values of x and y.

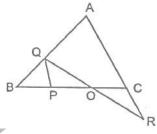
2. In the figure, AB = AD prove that \angle BCD is a right angle.

- **3.** If the bisector of an angle of a triangle also bisects the opposite side, prove that the triangle is isosceles.
- **4.** AD is meadian of \triangle ABC. Prove that AB + AC > 2 AD.
- 5. O is any point in the interior of a triangle ABC. Prove that OB + OC < AB + AC.
- **6.** In figure, \triangle ABC is a right angled triangle at B. ADEC and BCFG are square Prove that AF = BE.

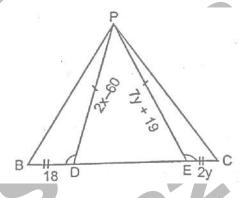

- 7. In figure CD is the diameter perpendicular to the chord AB of a circle with centre O. Prove that
 - (a) \angle CAO = \angle CBO

(b) $\angle AOB = 2 \angle ACB$

8. ABCD is a square and EF || BD. E and F are the mid point of BC and DC respectively. Prove that


(a) BE = DF

(b) AR bisects ∠BAD



9. In figure, $\triangle ABC$ is an equilateral triangle PQ \parallel AC and AC is produced to R such that CR = PQ. Prove that

QR bisects PC.

10. In figure, the congruent parts of triangles have been indicated by line markings. Find the values of x & y.

