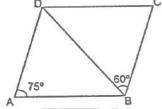
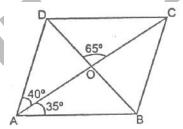
Chapter 8

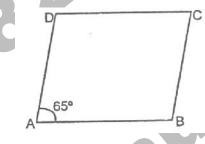
ASSIGNMENT

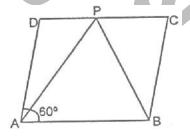

OBJECTIVE EX. 8.1

1.	n a parallelogram ABCD, $\angle D = 105^{\circ}$, then the $\angle A$ and $\angle B$ will be.						
	(A) 105 ⁰ , 75 ⁰	(B) 75°, 105°	(C) 105° , 105°	(D) 75°, 75°			
2.	In a parallelogram ABCD diagonals AC and BD intersects at O and AC = 12.8 cm and BD = 7.6 cm, then the						
	measure of OC and OD respectively equal to:						
	(A) 1.9 cm, 6.4 cm	(B) 3.8 cm, 3.2 cm	(C) 3.8 cm, 3.2 cm	(D) 6.4 cm, 3.8 cm			
3.	wo opposite angles of a parallelogram are $(3x - 2)^0$ and $(50 - x)^0$ then the value of x will be:						
	(A) 17^0	(B) 16 ⁰	(C) 15 ⁰	(D) 13^0			
4.	When the diagonals of a parallelogram are perpendicular to each other then it is called.						
	(A) Square	(B) Rectangle	(C) Rhombus	(D) Parallelogram			
5.	In a parallelogram ABCD, E is the mid-point of side BC. If DE and AB when produced meet at F then:						
	(A) AF = $\frac{1}{2}$ AB	(B)AF = 2AB	(C) $AF = 4AB$	(D) Data Insufficient			
6.	ABCD is a rhombus with \angle ABC = 56 $^{\circ}$, then the \angle ACD will be.						
	(A) 56°	(B) 62°	(C) 124 ⁰	(D) 34 ⁰			
7.				(D) 34° respectively. If AC = 16 cm, BC = 20			
7.	In a triangle, P,Q, and R	are the mid-points of th		respectively. If $AC = 16$ cm, $BC = 20$			
7.	In a triangle, P,Q, and R	are the mid-points of th	ne sides BC, CA and AB	respectively. If $AC = 16$ cm, $BC = 20$			
7. 8.	In a triangle, P,Q, and R cm and $AB = 24$ cm the (A) 60 cm	R are the mid-points of the quality (B) 30 cm	ne sides BC, CA and AB in adrilateral ARPQ will be (C) 40 cm	respectively. If $AC = 16$ cm, $BC = 20$ e.			
8.	In a triangle, P,Q, and R cm and $AB = 24$ cm the (A) 60 cm	R are the mid-points of the number of the quality (B) 30 cm with LM NO. If P and	ne sides BC, CA and AB in adrilateral ARPQ will be (C) 40 cm	respectively. If AC = 16 cm, BC = 20 e. (D) None			
8.	In a triangle, P,Q, and R cm and AB = 24 cm the (A) 60 cm LMNO is a trapezium v	R are the mid-points of the number of the quality (B) 30 cm with LM NO. If P and	ne sides BC, CA and AB in adrilateral ARPQ will be (C) 40 cm	respectively. If AC = 16 cm, BC = 20 e. (D) None			
8.	In a triangle, P,Q, and F cm and AB = 24 cm the (A) 60 cm LMNO is a trapezium vad ON = 10 cm then PQ = (A) 2.5 m	R are the mid-points of the number of the perimeter of the quality (B) 30 cm with LM NO. If P and a	ne sides BC, CA and AB is adrilateral ARPQ will be (C) 40 cm Q are the mid-points of (C) 7.5 cm	respectively. If AC = 16 cm, BC = 20 e. (D) None LO and MN respectively and LM =			
8. 5 cm an	In a triangle, P,Q, and F cm and AB = 24 cm the (A) 60 cm LMNO is a trapezium vad ON = 10 cm then PQ = (A) 2.5 m	R are the mid-points of the number of the perimeter of the quality (B) 30 cm with LM NO. If P and (B) 5 cm	ne sides BC, CA and AB is adrilateral ARPQ will be (C) 40 cm Q are the mid-points of (C) 7.5 cm	respectively. If AC = 16 cm, BC = 20 e. (D) None LO and MN respectively and LM =			
8. 5 cm an	In a triangle, P,Q, and R cm and AB = 24 cm the (A) 60 cm LMNO is a trapezium vad ON = 10 cm then PQ = (A) 2.5 m In a Isosceles trapezium (A) 900	R are the mid-points of the number of the perimeter of the quadratic (B) 30 cm with LM \parallel NO. If P and (B) 5 cm a ABCD if \angle A = 45 $^{\circ}$ then (B) 135 $^{\circ}$	ne sides BC, CA and AB is nadrilateral ARPQ will be (C) 40 cm Q are the mid-points of (C) 7.5 cm ∠C will be. (C) 900	respectively. If AC = 16 cm, BC = 20 e. (D) None LO and MN respectively and LM = (D) 15 cm			
8.5 cm an9.	In a triangle, P,Q, and R cm and AB = 24 cm the (A) 60 cm LMNO is a trapezium vad ON = 10 cm then PQ = (A) 2.5 m In a Isosceles trapezium (A) 900 In a right angle triangle	R are the mid-points of the number of the perimeter of the quadratic (B) 30 cm with LM \parallel NO. If P and (B) 5 cm a ABCD if \angle A = 45 $^{\circ}$ then (B) 135 $^{\circ}$	ne sides BC, CA and AB and adrilateral ARPQ will be (C) 40 cm Q are the mid-points of (C) 7.5 cm ∠C will be. (C) 900 B. Given that AB = 9 cm	respectively. If AC = 16 cm, BC = 20 e. (D) None LO and MN respectively and LM = (D) 15 cm			

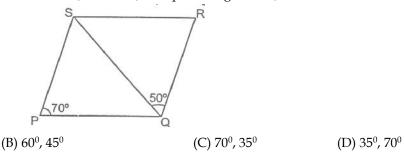


SUBJECTIVE EX. - 8.2


- 1. Find the measures of all the angles of a parallelogram, if one angle is 24⁰ less than twice the smallest angle.
- 2. In the following figure, ABCD is a parallelogram in which $\angle DAB = 75^{\circ}$ and $\angle DBC = 60^{\circ}$. Find $\angle COB$ and $\angle ADB$.

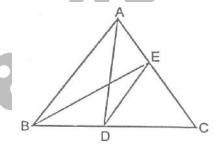

- 3. In the following figure, ABCD is a parallelogram $\angle DAO = 40^{\circ}$, $\angle BAO = 35^{\circ}$ and $\angle COD = 65^{\circ}$. Find
 - (i) ∠ABO
 - (ii) ∠ODC
 - (iii) ∠ACB
 - (iv) ∠CBD

4. In the following figure, ABCD is a parallelogram in which $\angle A = 65^{\circ}$. Find $\angle B$, $\angle C$ and $\angle D$.


5. In the following figure, ABCD is a parallelogram in which $\angle A = 60^{\circ}$. If the bisectors of $\angle A$ and $\angle B$ meet at P, prove that $\angle APB = 90^{\circ}$. Also, prove that AD = DP, PC = BC and DC = 2AD.

OBJECTIVE EX. 8.3

1.	When the opposite sides of quadrilateral are parallel to each other then it is called.					
	(A) Square	(B) Parallelogram	(C) Trapezium	(D) Rhombus		
2.	In a $\triangle ABC$, D, E and F	are respectively, the mid-points	of BC, CA and AB. If the	e lengths of side AB, BC and		
	CA are 17 cm, 18 cm and 19 cm respectively, then the perimeter of ΔDEF equal to :					
	(A) 54 cm	(B) 18 cm	(C) 27 cm	(D) 13.5 cm		
3.	When only one pair of opposite sides of a quadrilateral parallel to each other it is called.					
	(A) Square	(B) Rhombus	(C) Parallelogram	(D) Trapezium		
4.	When the diagonals of a parallelogram are equal but not perpendicular to each other it is called a.					
	(A) Square	(B) Rectangle	(C) Rhombus	(D) Parallelogram		
5.	When each angle of a rhombus equal to 90.0, it is called a.					
	(A) Square	(B) Rectangle	(C) Trapezium	(D) Parallelogram		
6.	In the adjoining figure, AP and BP are angle bisectors of $\angle A$ and $\angle B$ which meets at P on the parallelogram					
	ABCD. Then 2∠APB =	P 3 4	c			
	$(A) \angle C + \angle D$	(B) ∠A + ∠C	$(C) \angle B + \angle D$	(D) 2∠C		
7.	In a quadrilateral ABCD, AO & DO are angle bisectors of $\angle A$ and $\angle D$ and given that $\angle C = 105^{\circ}$, $\angle B = 70^{\circ}$					
	then the $\angle AOD$ is :					
	(A) 67.5°	(B) 77.5 ⁰	(C) 87.5°	(D) 99.75 ⁰		
8.	In a parallelogram the sum of the angle bisectors of two adjacent angle is:					
	(A) 30°	(B) 45 ⁰	(C) 60°	(D) 90°		
9.	In the adjoining parallelogram ABCD, the angles x and y are:					
	(A) 60°, 30°	(B) 30°, 60°	(C) 45°, 45°	(D) 90°, 90°		
	() 00 , 00	(-, 55, 55	(-) ,	(-) / / / /		


10. From the figure find the value of \angle SQP and \angle QSP of parallelogram PQRS.

(A) 60° , 50°

SUBJECTIVE EX. 8.4

- 1. Prove that the line joining the mid-points of the diagonals of a trapezium is parallel to each to the parallel sides and is equal to half of the difference of these sides.
- ABCD is a parallelogram. P is a point on AD such that $AP = \frac{1}{3}$ AD. Q is a point on BC such that $CQ = \frac{1}{3}$ BC. Prove that AQCP is a parallelogram.
- 3. In the following figure, AD is a median and DE AB. Prove that BE is a median.

- 4. Prove that "If a diagonal of a parallelogram bisects one of the angles of the parallelogram, it also bisects the second angle and then the two diagonals are perpendicular to each other.
- 5. Prove that the figure formed by joining the mid-points of the consecutive sides of a quadrilateral is a parallelogram.
- 6. In a parallelogram ABCD, the bisector of $\angle A$ also bisects BC at P. Prove that AD = 2AB.
- 7. The diagonals of parallelogram ABCD intersect at O. A line through O intersects AB at X and DC at Y. Prove that OX = OY.
- 8. Show that the quadrilateral formed by joining the mid points of the sides of square is also a square.
- 9. ABCD is a trapezium in which side AB is parallel to side DC and E is the mid-point of side AD. If F is a point on side BC such that segment EF is parallel to side DC. Prove that EF = $\frac{1}{2}$ (AB + DC).
- 10. In \triangle ABC, AD is the median through A and E is the mid-point of AD. BE produced meets AC in F. Prove that AF= $\frac{1}{3}$ AC.

