CHAPTER – 8 QUADRILATERALS

8.1 INTRODUCTION

A quadrilateral is a closed figure obtained by joining four points (with no three points collinear) In an order.

- (I) Since, 'quad' means 'four' and 'lateral' is for 'sides' therefore 'quadrilateral' means 'a figure bounded by four sides'.
- (II) Every quadrilateral has:
- (A) Four vertices,
- **(B)** Four sides
- (C) Four angles and
- (D) Two diagonals.
- (III) A diagonals is a line segment obtained on joining the opposite vertices.
- (a) Sum of the Angles of a Quadrilateral:

Consider a quadrilateral ABCD as shown alongside. Join A and C to get the diagonal AC which divides the quadrilateral ABCD into two triangles ABC and ADC.

We know the sum of the angles of each triangle is 180⁰(2 right angles).

:. In
$$\triangle ABC$$
; $\angle CAB + \angle B + \angle BCA = 180^{\circ}$ and In $\triangle ADC$; $\angle DAC + \angle D + \angle DCA = 180^{\circ}$

On adding, we get:
$$(\angle CAB + \angle DAC) + \angle B + \angle D + (\angle BCA + \angle DCA) = 180^{\circ} + 180^{\circ}$$

$$\Rightarrow$$
 $\angle A + \angle B + \angle D + \angle C = 360^{\circ}$

Thus, the sum of the angles of a quadrilateral is 360° (4-right angles).

- **Ex.1** The angles of a quadrilateral are in the ratio 3:5:9:13. Find all the angles of the quadrilateral.
- Sol. Given the ratio between the angles of the quadrilateral = 3:5:9:13 and 3+5+9+13=30Since, the sum of the angles of the quadrilateral = 360°

$$\therefore \text{ First angle of it} = \frac{3}{30} \times 360^{0} = 36^{0},$$

Second angle =
$$\frac{5}{30} \times 360^0 = 60^0$$
,

Third angle =
$$\frac{9}{30} \times 360^{\circ} = 108^{\circ}$$
,

And, Fourth angle =
$$\frac{13}{30} \times 360^{0} = 156^{0}$$

 \therefore $\,$ The angles of quadrilateral are 360°, 60°, 108° and 156°.

ALTERNATE SOLUTION:

Let the angles be 3x, 5x, 9x and 13.

$$\therefore 3x + 5x + 9x + 13x = 360^{\circ}$$

$$\Rightarrow$$
 30x = 360° and x = $\frac{360^{\circ}}{30}$ = 12°

$$\therefore$$
 1st angle = 3x = 2 × 12⁰ = 360⁰

$$2^{\text{nd}}$$
 angle = $5x = \times 12^0 = 60^0$

$$3^{rd}$$
 angle = $9x = 9 \times 12^0 = 108^0$

And,
$$4^{th}$$
 angle = $13 \times 12^0 = 156^0$.

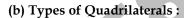
Ex.2 Use the informations given in adjoining figure to calculate the value of x.

Sol. Since, EAB is a straight line.

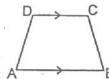
$$\therefore$$
 $\angle DAE + \angle DAB = 180^{\circ}$

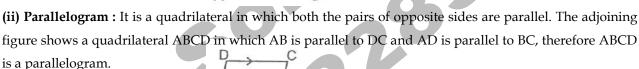
$$\Rightarrow$$
 73⁰ + \angle DAB = 180⁰

i.e.,
$$\angle DAB = 180^{\circ} - 73^{\circ} = 107^{\circ}$$


Since, the sum of the angles of quadrilateral ABCD is 360°

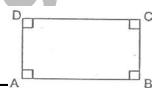
$$107^0 + 105^0 + x + 80^0 = 360^0$$


$$\Rightarrow$$
 292⁰ + x = 360⁰


$$\Rightarrow$$
 x = 360⁰ - 292⁰

$$\Rightarrow x = 68^{\circ}$$

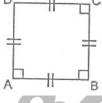
(i) Trapezium: It is a quadrilateral in which one pair of opposite sides are parallel. In the quadrilateral ABCD, drawn alongside, sides AB and DC are parallel, therefore it is a trapezium.



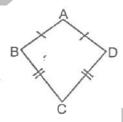
(iii) **Rectangle :** it is a quadrilateral whose each angle is 90°

(A)
$$\angle A + \angle B = 90^{0} + 90^{0} = 180^{0} \Rightarrow AD \parallel BC$$

(B)
$$\angle$$
B + \angle C = 90⁰ + 90⁰ = 180⁰ \Rightarrow AB \parallel DC



Rectangle ABCD is a parallelogram Also.


(iv) Rhombus: It is a quadrilateral whose all the sides are equal. The adjoining figure shows a quadrilateral ABCD in which AB = BC = CD = DA; therefore it is a rhombus.

(v) Square: It is a quadrilateral whose all the sides are equal and each angle is 90° . The adjoining figure shows a quadrilateral ABCD in which AB = BC = CD = DA and \angle A = \angle B = \angle C = \angle D = 90° , therefore ABCD is a square.

(vi) Kite: It is a quadrilateral in which two pairs of adjacent sides are equal. The adjoining figure shows a quadrilateral ABCD in which adjacent sides AB and AD are equal i.e., AB = AD and also the other pair of adjacent sides are equal i.e., BC = CD; therefore it is a kite or kite shaped figure.

REMARK:

- (i) Square, rectangle and rhombus are all parallelograms.
- (ii) Kite and trapezium are not parallelograms.
- (iii) A square is a rectangle.
- (iv) A square is a rhombus.
- (v) A parallelogram is a trapezium.

