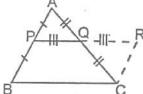
8.3 MID-POINT THEOREM

Statement : In a triangle, the line segment joining the mid-points of any two sides is parallel to the third side and is half of it.



Given: A triangle ABC is which P is the mid-point of side AB and Q is the mid-point of side AC.

To Prove : P is parallel to BC and is half of it i.e., PQ | BC and PQ = $\frac{1}{2}$ BC

Construction: Produce PQ upto point R such that PQ = QR. Join T and C.

Proof: In \triangle APQ and \triangle CRQ: -

$$PQ = QR$$

[By construction]

$$AQ = QC$$

[Given]

And,
$$\angle AQP = \angle CQR$$

[Vertically opposite angles]

$$\Rightarrow \Delta APQ \cong \Delta CRQ$$

$$\Rightarrow$$
 AP = CR

And,
$$\angle APQ = \angle CRQ$$

But, \angle APQ and \angle CRQ are alternate angles and we know, whenever the alternate angles are equal, the lines are parallel.

Given, P is mid-point of AB

$$\Rightarrow$$
 AP = BP

$$\Rightarrow$$
 CR = BP

$$[As, AP = CR]$$

Now, BP = CR and BP
$$\parallel$$
 CR

 \Rightarrow BCRP is a parallelogram.

[When any pair of opposite sides are equal and parallel, the quadrilateral is a parallelogram] BCRP is a parallelogram and opposite sides of a parallelogram are equal and parallel.

$$\therefore$$
 PR = BC and PR || BC

Since,
$$PQ = QR$$

$$\Rightarrow$$
 PQ = $\frac{1}{2}$ PR

$$=\frac{1}{2}BC$$

$$[As, PR = BC]$$

$$\therefore$$
 PQ | BC and P + $\frac{1}{2}$ BC

Hence Proved.

ALTERNATIVE METHOD:

Construction: Draw CR parallel to BA intersecting PQ produced at point R.

Proof: In \triangle APQ and \triangle CRQ

$$AQ = CQ$$

$$\angle AQP = \angle RQC$$
 [Vertically opposite angles]

And
$$\angle PAQ = \angle RCQ$$
 [Alternate angles, as AB | CR]

$$\triangle APQ \cong \triangle CRQ$$
 [By ASA]

$$\Rightarrow$$
 CR = AP and QR = PQ [By cpctc]

Since,
$$CR = AP$$
 and $AP = PB$

$$\Rightarrow$$
 CR = PB

$$\Rightarrow$$
 BC | PR and BC = PR

$$\Rightarrow$$
 BC || PQ and BC = 2PQ

$$\Rightarrow$$
 PQ | BC and PQ = $\frac{1}{2}$ BC

[By construction]

[Given]

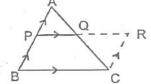
[As, opposite sides PB and CR are equal and parallel]

(a) Converse of the Mid-Point Theorem

Statement: The line drawn through the mid-point of one side of a triangle parallel to the another side

[::PQ = QR]

bisects the third side.



Given: A triangle ABC in which P is the mid-point of side AB nd PQ is parallel to BC.

To prove: PQ bisects the third side AB i.e., AQ = QC.

Construction : Through C, draw CR parallel to BA, which meets PQ produced at point R.

Proof: Since, PQ | BC i.e., PR | BC [Given] and CR | BA i.e., CR | BP [By construction]

- \therefore Opposite sides of quadrilateral PBCR are parallel.
- ⇒ PBCR is a parallelogram

$$\Rightarrow$$
 BP = CR

Also,
$$BP = AP$$
 [As, P is mid-point of AB]

$$\therefore$$
 CR = AP

$$\therefore$$
 AB || CR and AC is transversal, $\angle PAQ = \angle RCQ$

$$\therefore$$
 AB || CR and PR is transversal, \angle APQ = \angle CRQ

In
$$\triangle$$
APQ and \triangle CRQ

$$CR = AP$$
, $\angle PAQ = \angle RCQ$ and $\angle APQ = \angle CRQ$

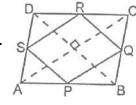
$$\Rightarrow \Delta APQ \cong \Delta CRQ$$

$$\Rightarrow$$
 AAQ = QC

Ex.1 ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively.

Prove that the quadrilateral PQRS is a rectangle.

Sol. According to the given statement, the figure will be a shown alongside; using mid-point theorem:



In
$$\triangle ABC$$
, PQ || AC and PQ = $\frac{1}{2}$ AC(i)

In
$$\triangle ADC$$
, SR \parallel AC and SR = $\frac{1}{2}$ AC(ii)

$$\therefore$$
 P = SR and PQ | SR

⇒ PQRS is a parallelogram.

Now, PQRS will be a rectangle if any angle of the parallelogram PWRS is 90°

$$QR = BD$$

[By mid-point theorem]

But, AC ⊥ BD

[Diagonals of a rhombus are perpendicular to each other]

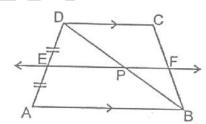
∴ PQ ⊥ QR

[Angle between two lines = angles between their parallels]

⇒ PQRS is a rectangle

Hence Proved.

- Ex.2 ABCD is a trapezium in which AB | DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (as shown). Prove that F is the mid-point of BC.
- **Sol.** Given line EF is parallel to AB and AB | DC
 - ∴ EF || AB || DC.



According to the converse of the mid-point theorem, is $\triangle ABD$, E is the mid-point of AD.

EP is parallel to AB

∴ P is mid-point of side BD

[The line through the mid-point of a side of a triangle and parallel to the other side, bisects the third side]

Now, in $\triangle BCD$, P is mid-point of BD

[Proved above]

And, PF is parallel to DC

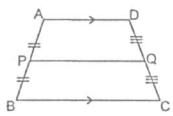
∴ F is mid-point of BC

[The line through the mid-point of a side of a triangle and parallel to the other side, bisects the third side]

Hence Proved.

REMARK:

In quadrilateral ABCD, if side AD is parallel to side BC; ABCD is a trapezium.

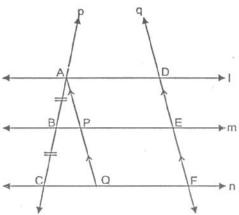


Now, P and Q are the mid-points of the non-parallel sides of the trapezium; then $PQ = \frac{1}{2}$ (AD + BC). i.e. The

length of the line segment joining the mid-points of the two non-parallel sides of a trapezium is always equal to half of the sum of the lengths of its two parallel sides.

Theorem.3: If there are three or more parallel lines and the intercepts made by them on a transversal are equal, then the corresponding intercepts on any other transversal are also equal.

Given : Three parallel lines I, m and n i.e., $I \parallel m \parallel n$. A transversal p meets these parallel lines are points A, B and C respectively such that AB = BC. Another transversal q also meets parallel lines I, m and n at points D, E and F respectively.



To Prove : DE = EF

Construction : Through point A, draw a line parallel to DEF; which meets BE at point P and CF and point Q.

Proof : In \triangle ACQ, B is mid-point of AC and BP is parallel to CQ and we know that the line through the mid-point of one side of the triangle and parallel to another sides bisects the third side.

$$\therefore$$
 AP = PQ ...(i)

When the opposite sides of a quadrilateral are parallel, it is a parallelogram and so its opposite sides are equal.

$$\therefore$$
 AP || DE and AD || PE \Rightarrow APED is a parallelogram.

$$\Rightarrow$$
 AP = DE(ii)

And PQ
$$\parallel$$
 EF and PE \parallel QF \Rightarrow PQFE is a parallelogram

$$\Rightarrow$$
 PQ = EF

From above equations, we get

$$DE = EF$$

....(iii)

Ex.3 In the given figure, E and F are respectively, the mid-points of non-parallel sides of a trapezium ABCD.

Prove that

(ii) EF =
$$\frac{1}{2}$$
 (AB + DC).



Hence Proved.

Sol. Join BE and produce it to intersect CD produced at point P. In \triangle AEB and \triangle DEP, AB \parallel PC and BP is transversal

$$\Rightarrow$$
 $\angle ABE = \angle DPE$

$$\angle AEB = \angle DEP$$

$$AE = DE$$

$$\triangle AEB \cong \triangle DEP$$

$$\Rightarrow$$
 BE = PE

$$AB = DP$$

Since, the line joining the mind-points of any two sides of a triangle is parallel and half of the third side, therefore, is ΔBPC ,

E is mid-point of BP

[As,
$$BE = PE$$
]

and F is mid-point of BC

$$\Rightarrow$$
 EF || PC and EF = $\frac{1}{2}$ PC

$$\Rightarrow$$
 EF || DC and EF = $\frac{1}{2}$ (PD + DC)

$$\Rightarrow$$
 EF || AB and EF = $\frac{1}{2}$ (AB + DC)

[As, DC
$$\parallel$$
 AB and PD = AB]

