Chapter 9

ASSIGNMENT

OBJECTIVE EX. - 9.1

- The sides BA and DC of the parallelogram ABCD are produced as shown in the figure then
 - (A) a + x = b + y

(B) a + y = b + a

(C) a + b = x + y

(D) a - b = x - y

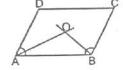
- The sum of the interior angles of polygon is three times the sum of its exterior angles. Then numbers of 2. sides in polygon is
 - (A) 6

(B) 7

(C) 8

- (D)9
- In the adjoining figure, AP and BP are angle bisector of ∠A and ∠B which meet at a point P of the 3. parallelogram ABCD. Then 2∠APB =
 - $(A) \angle A + \angle B$

(B) $\angle A + \angle C$


(C) \angle B + \angle D

- (D) $\angle C + \angle D$
- In a parallelogram the sum of the angle bisector of two adjacent angles is 4.
 - (A) 30^{0}

(B) 45°

 $(C) 60^{0}$

(D) 90^{0}

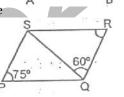
- In a parallelogram ABCD $\angle D = 60^{\circ}$ then the measurement of $\angle A$ 5.
 - (A) 120^{0}
- (B) 65°
- $(C) 90^{0}$
- (D) 75°

- In the adjoining figure ABCD, the angles x and y are 6.
 - $(A) 60^{\circ}, 30^{\circ}$

(B) 30° , 60°

(C) 45° , 45°

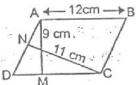
(D) 90° , 90°



 $(A) 45^{\circ}, 60^{\circ}$

(B) 60° , 45°

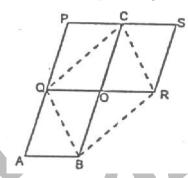
(C) 70° , 35°


(D) 35° , 70

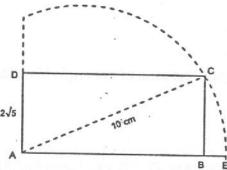
- 8. In parallelogram ABCD, AB = 12 cm. The altitudes corresponding to the sides AB and AD are respectively 9 cm and 11 cm. Find AD.
 - (A) $\frac{108}{11}$ cm

(B) $\frac{108}{10}$ cm
(D) $\frac{108}{17}$ cm

(C) $\frac{99}{10}$ cm

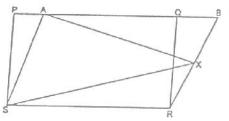

- In \triangle ABC, AD is a median and P is a point is AD such that AP : PD = 1 : 2 then the area of \triangle ABP = 9.

- (A) $\frac{1}{2}$ × Area of \triangle ABC (B) $\frac{2}{3}$ × Area of \triangle ABC (C) $\frac{1}{3}$ × Area of \triangle ABC (D) $\frac{1}{6}$ × Area of \triangle ABC

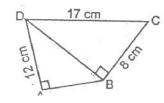

- In \triangle ABC if D is a point in BC and divides it the ratio 3 : 5 i.e., if BD : DC = 3 : 5 then, ar $(\triangle$ ADC) : ar(\triangle ABC) = ?
 - (A) 3:5
- (B) 3:8
- (C) 5:8
- (D) 8:3

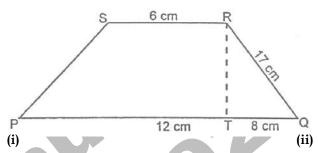
SUBJECTIVE EX. - 9.2

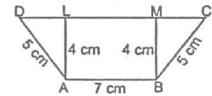
- 1. If each diagonal of a quadrilateral separates into two triangles of equal area, then show that the quadrilateral is a parallelogram.
- 2. In the adjoining figure, PQRS and PABC are two parallelograms of equal area. Prove that QC ∥ BR.


3. In the figure ABCD is rectangle inscribed in a quadrant of a circle of radius 10 cm. If AD = $2\sqrt{5}$ cm. Find the area of the rectangle.

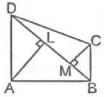
- 4. P and Q are any two points lying on the sides DC and AD respectively of parallelogram ABCD. Prove that : ar $(\Delta APB) = ar(\Delta BQC)$.
- 5. In the figure, given alongside, PQRS and ABRS are parallelograms and X is any point on side BR. Prove that

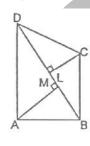



- (i) ar(PQRS) = ar(ABRS)
- (ii) $ar(AXS) = \frac{1}{2}ar(PQRS)$

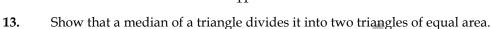

- **6.** Find the area a rhombus, the lengths of whose diagonals are 16 cm and 24 cm respectively.
- 7. Find the area of trapezium whose parallel sides are 8 cm and 6 cm respectively and the distance between these sides is 8 cm.

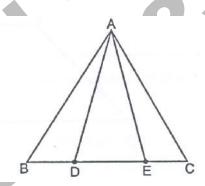
- 8. (i) Calculate the area of quad. ABCD, given in fig. (i)
 - (ii) Calculate the area of trap. PQRS, given in fig. (ii).


9. In figure, ABCD is a trapezium in which AB \parallel DC; AB = 7 cm; AD = BC = 5 cm and the distance between AB and DC is 4 cm.


Find the length of DC and hence, find the area of trap. ABCD.

10. BD is one of the diagonals of quadrilateral ABCD. If AL \perp BD and CM \perp BD, show that : ar(quadrilateral


ABCD) =
$$\frac{1}{2} \times BC \times (AL + CM)$$
.


11. In the figure, ABCD is a quadrilateral in which diag. BD = 20 cm. If AL \perp BD and CM \perp BD, such that : AL = 10 cm and CM = 5 cm, find the area of quadrilateral ABCD.

- 12. In fig. ABCD is a trapezium in which AB \parallel DC and DC = 40 cm and AB = 60 cm. If X and Y are, respectively, the mid points of AD and BC, prove that
 - (i) XY = 50 cm
 - (ii) DCYX is a trapezium
 - (iii) Area (trapezium DCYX) = $\frac{9}{11}$ Area (trapezium XYBA)

In the figure, given alongside, D and E are two points on BC such that BD = DE = EC. Prove that : ar(ABD) = ar(ADE) = ar(AEC)

15. In triangle ABC, if a point D divides BC in the ratio 2 : 5, show that : $ar(\Delta ABD)$: $ar(\Delta ACD)$ = 2 : 5

