9.2 IMPORTANT THEOREMS

Theorem -1 A diagonal of parallelogram divides it into two triangles of equal area.

Given: A parallelogram ABCD whose one of the diagonals is BD.

To prove : ar $(\triangle ABD) = ar (\triangle CDB)$.

Proof: In \triangle ABD and \triangle CDB.

$$AB = DC$$
 [Opp. sides of a g^{m}]

AD = BC [Opp. sides of a
$$\|g^{m}$$
]

$$BD = BD$$
 [Common side]

$$\therefore \quad \Delta ABD \cong \Delta CDB \qquad [By SSS]$$

$$\therefore$$
 ar (\triangle ABD) = ar(\triangle CDB) [Congruent area axiom]

Theorem -2: Parallelograms on the same base or equal base and between the same parallels are equal in

Given : Two gen ABCD and ABEF on the same base AB and between the same parallels AB and FC.

To Prove:
$$ar(\|^{gm} ABCD) = ar(\|^{gm} ABEF)$$

Proof: In \triangle ADF and \triangle BCE, we have

AD = BC [Opposite sides of a
$$\|g^{m}\|$$

AF = BE [Opposite sides of a
$$\|^{gm}$$
]

$$\angle DAF = \angle CBE$$
 [:: AD || BC and AF || BE]

[Angle between AD and AF = angle between BC and BE]

$$\therefore \quad \Delta ADF \cong \Delta BCE$$
 [By SAS]

$$\therefore$$
 ar(\triangle ADF) = ar(\triangle BCE)(i)

$$\therefore \quad \operatorname{ar}(\|^{\operatorname{gm}} \operatorname{ABCD}) = \operatorname{ar}(\operatorname{ABED}) + \operatorname{ar}(\operatorname{\DeltaBCE})$$

= ar(ABED) + ar(
$$\triangle$$
ADF) [Using (i)]
= ar(\parallel^{gm} ABEF).

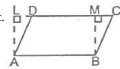
Hence,
$$ar(\|^{gm} ABCD) = ar(\|^{gm} ABEF)$$
.

Hence Proved.

NOTE: A rectangle is also parallelogram.

Theorem -3: The are of parallelogram is the product of its base and the corresponding altitude.

Given : A \parallel^{gm} ABCD in which AB is the base and AL is the corresponding height.



To prove : Area ($\|$ ^{gm} ABCD) = AB × AL.

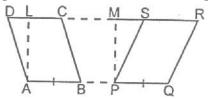
Construction : Draw BM \perp DC so that rectangle ABML is formed.

Proof: $\|^{gm}$ ABCD and rectangle ABML are on the same base AB and between the same parallel lines AB and LC.

- \therefore ar($\|g^{m} ABCD$) = ar(rectangle ABML) = AB × AL.
- \therefore area of a $\|g^{m}\| = base \times height$.

Hence Proved.

Theorem-4: Parallelograms on equal bases and between the same parallels are equal in area.



Given : Two general ABCD and PQRS with equal base AB and PQ and between the same parallels, AQ and DR

To prove: $ar(\|g^m ABCD) = ar(\|g^m PQRS)$.

Construction : Draw AL \perp DR and PM \perp DR. **Proof :** AB \parallel DR, AL \perp DR and PM \perp Dr

 \therefore AL = PM.

 \therefore ar($\|g^{m} \land ABCD$) = $AB \times AL$

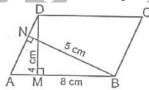
$$= PQ \times PM$$
$$= a(\|g^{m} PQRS).$$

[:: AB = PQ and AL = PM]

RS). Hence Proved.

ILLUSTRATIONS:

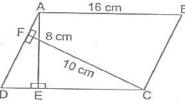
- **Ex.1** In a parallelogram ABCD, AB = 8 cm. The altitudes corresponding to sides AB and AD are respectively 4 m and 5 cm. Find AD.
- **Sol.** We know that, Area of a parallelogram = Base × Corresponding altitude



- \therefore Area of parallelogram ABCD = AD × BN = AB × DM
- \Rightarrow AD \times 5 = 8 \times 4
- $\Rightarrow \qquad AD = \frac{8 \times 4}{5}$

= 6.4 cm. Ans.

Ex.2 In figure, ABCD is a parallelogram, AE \perp DC and CF \perp AD. If AB = 16 cm, AE = 8 cm and CF = 10 cm find AD.



Sol. We have AB = 16 cm, AE = 8 cm CF = 10 cm.

We know that are of parallelogram = Base × Height

[Base = CD, height =
$$AE$$
]

 $ABCD = CD \times AE = 16 \times 8 = 128 \text{ cm}^2$

Again, Area of parallelogram = Base \times Height = AD \times CF

[Base =
$$AD$$
, height = CF]

$$128 = AD \times 10$$

 $\Rightarrow \qquad \text{AD} = \frac{128}{10} = 12.8 \text{ cm}$

Ans

- **Ex.3** ABCD is a quadrilateral and BD is one of its diagonal as shown in the figure. Show that the quadrilateral ABCD is a parallelogram and find its area.
- **Sol.** From figure, the transversal DB is intersecting a pair of lines DC and AB such that

$$\angle$$
CDB = \angle ABD = 90 $^{\circ}$.

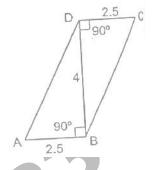
Hence these angles from a pair of alternate equal angles.

Also
$$DC = AB = 2.5$$
 units.

: Quadrilateral ABCD is a parallelogram.

Now, area of parallelogram ABCD

- = Base × Corresponding altitude
- = 2.5×4
- = 10 sq. units Ans.



- **Ex.4** The diagonals of a parallelogram ABCD intersect in O. A line through O meets AB is X and the opposite side CD in Y. Show that ar (quadrilateral AXYD) = $\frac{1}{2}$ far(parallelogram ABCD).
- **Sol.** : AC is a diagonal of the parallelogram ABCD.

$$ar(\Delta ACD) = \frac{1}{2}ar(ABCD)$$

...(i)

Now, in Δ s AOX and COY,

$$AO = CO$$

: Diagonals of parallelogram bisect each other.

$$\angle AOX = \angle COY$$

 $\angle OAX = \angle OCY$

∴ AB | DC and transversal AC intersects them

$$\triangle AOX \cong \Delta COY$$

$$\therefore$$
 ar($\triangle AOX$) = ar($\triangle COY$)

Adding ar(quad. AOYD) to both sides of (ii), we get $ar(quad. \ AOYD) + ar(\Delta AOX) = ar(quad. \ AOYD) + ar(\Delta COY)$

 \Rightarrow ar(quad. AXYD) = ar(\triangle ACD) = $\frac{1}{2}$ ar(\parallel gm ABCD) (using (i))

Hence Proved.

