1.3 CONTRADICTION METHOD

....(i)

- **Ex.12** Prove that $\sqrt{2}$ is an irrational number.
- **Sol.** Let assume on the contrary that $\sqrt{2}$ is a rational number.

Then, there exists positive integer a and b such that

 $\sqrt{2} = \frac{a}{b}$ where, a and b are co primes i.e. their HCF is 1.

$$\Rightarrow (\sqrt{2})^2 = \left(\frac{a}{b}\right)^2$$

$$\Rightarrow \qquad 2 = \frac{a^2}{b^2}$$

$$\Rightarrow$$
 $a^2 = 2b^2$

$$\Rightarrow a^2 \text{ is multiple of 2}$$
a is a multiple of 2

$$\Rightarrow$$
 a = 2c for some integer c.

$$\Rightarrow$$
 $a^2 = 4c^2$

$$\Rightarrow$$
 $2b^2 = 4c^2$

$$\Rightarrow$$
 $b^2 = 2c^2$

$$\Rightarrow b^2 \text{ is a multiple of 2}$$

b is a multiple of 2(ii)

From (i) and (ii), a and b have at least 2 as a common factor. But this contradicts the fact that a and b are coprime. This means that $\sqrt{2}$ is an irrational number.

- **Ex.13** Prove that $3 \sqrt{5}$ is an irrational number.
- **Sol.** Let assume that on the contrary that $3 \sqrt{5}$ is rational.

Then, there exist co-prime positive integers a and b such that,

$$3 - \sqrt{5} = \frac{a}{b}$$

$$\Rightarrow \qquad 3 - \frac{a}{b} = \sqrt{5}$$

$$\Rightarrow \frac{3b-a}{b} = \sqrt{5}$$

$$\Rightarrow$$
 $\sqrt{5}$ is rational [: a,b, are integer : $\frac{3b-a}{b}$ is a rational number]

This contradicts the fact that $\sqrt{5}$ is irrational

Hence, $3 - \sqrt{5}$ is an irrational number.