CHAPTER – 1 Set Theory

1.1 Introduction

A set is well defined class or collection of objects.

A set is often described in the following two ways.

- (1) Roster method or Listing method: In this method a set is described by listing elements, separated by commas, within braces $\{\}$. The set of vowels of English alphabet may be described as $\{a, e, i, o, u\}$.
- (2) **Set-builder method or Rule method:** In this method, a set is described by a characterizing property P(x) of its elements x. In such a case the set is described by $\{x : P(x) \text{ holds}\}$ or $\{x \mid P(x) \text{ holds}\}$, which is read as 'the set of all x such that P(x) holds'. The symbol '|' or ':' is read as 'such that'.

The set $A = \{0, 1, 4, 9, 16,\}$ can be written as $A = \{x^2 \mid x \in Z\}$.

☐ Symbols

Symbol	Meaning
\Rightarrow	Implies
€	Belongs to
$A \subset B$	A is a subset of B
\Leftrightarrow	Implies and is
	implied by
∉	Does not belong to
<i>s.t.</i> (: or)	Such that
\forall	For every
Ξ	There exists
iff	If and only if
&	And
$a \mid b$	a is a divisor of b
N	Set of natural
	numbers
I or Z	Set of integers
R	Set of real numbers
C	Set of complex
	numbers
Q	Set of rational
	numbers

