CHAPTER – 11 CONSTRUCTION

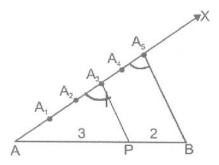
11.1 DIVISION OF A LINE SEGENT

In order to divide a line segment internally is a given ratio m: n, where both m and n are positive integers, we follow the following steps:

Step of construction:

- (i) Draw a line segment AB of given length by using a ruler.
- (ii) Draw and ray AX making an acute angle with AB.
- (iii) Along AX mark off (m + n) points A_1 , A_2 ,..., A_{m+n} such that $AA_1 = A_1A_2 = = A_{m+n+}A_{m+n}$.
- (iv) Join B A_{m+n}
- (v) Through the point A_m draw a line parallel to A_{m+n} B by making an angle equal to $\angle AA_{m+n}$ B at A_m . Suppose this line meets AB at a point P.

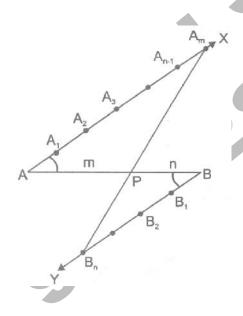
The point P so obtained is the required point which divides AB internally in the ratio m: n.



- **Ex.1** Divide a line segment of length 12 cm internally in the ratio 3:2.
- **Sol.** Following are the steps of construction.

Step of construction:

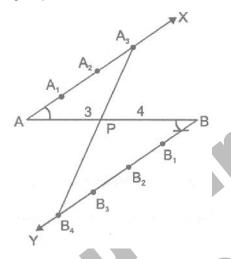
- (i) Draw a line segment AB = 12 cm by using a ruler.
- (ii) Draw any ray making an acute angle ∠BAX with AB.
- (iii) Along AX, mark-off 5 (=3 + 2) points A_1 , A_2 , A_3 , A_4 and A_5 such that $AA_1 = A_1A_2 = A_2A_3 = A_3A_4 = A_4A_5$.
- (iv) Join BA₅
- (v) Through A_3 draw a line A_3P parallel to A_5B by making an angle equal to $\angle AA_5$ B at A_3 intersecting AB at a point P.


The point P so obtained is the required point, which divides AB internally in the ratio 3:2.

ALTERNATIVE METHOD FOR DIVISION OF A LINE SEGMENT INTERNALLY IN A GIVEN RATIO :

Use the following steps to divide a given line segment AB internally in a given ration m: n, where m and natural members.

Steps of Construction:


- (i) Draw a line segment AB of given length.
- (ii) Draw any ray AZ making an acute angle ∠BAX with AB.
- (iii) Draw a ray BY, on opposite side of AX, parallel to AX making an angle ∠ABY equal to ∠BAX.
- (iv) Mark off a points A_1 , A_2 ,.... A_m on AX and n points B_1 , B_2 ,... B_n on BY such that $AA_1 = A_1A_2 = = A_{m-1}A_m = B_1B_2 =B_{n-1}B_n$.
- (v) Join A_mB_n. Suppose it intersect AB at P.

The point P is the required point dividing AB in the ratio m: n.

- **Ex.2** Decide a line segment of length 6 cm internally in the ratio 3:4.
- **Sol.** Follow the following steps:

Steps of Construction:

- (i) Draw a line segment AB of length 6 cm.
- (ii) Draw any ray AX making an acute angle ∠BAX with AB.
- (iii) Draw a ray BY parallel to AX by making $\angle ABY$ equal to $\angle BAX$.
- (iv) Mark of three point A_1, A_2, A_3 on AX and 4 points B_1 , B_2 m B_3 , B_4 on BY such that $AA_1 = A_1A_2 = A_2A_3 = B_1B_1 = B_1B_2 = B_2B_3 = B_2B_4$.
- (v) Join A_3B_4 . Suppose it intersects AB at a point P. Then, P is the point dividing AB internally in the ratio 3:4.

