
10.7 Length of perpendicular

- (1) **Distance of a point from a line :** The length p of the perpendicular from the point (x_1, y_1) to the line ax + by + c = 0 is given by $p = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$.
 - Length of perpendicular from origin to the line ax + by + c = 0 is $\left| \frac{c}{\sqrt{a^2 + b^2}} \right|$.
- Length of perpendicular from the point (x_1,y_1) to the line $x \cos r + y \sin r = p$ is $|x_1 \cos r + y_1 \sin r p|$.
- (2) **Distance between two parallel lines :** Let the two parallel lines be $ax + by + c_1 = 0$ and $ax + by + c_2 = 0$.

First Method: The distance between the lines is $d = \frac{|c_1 - c_2|}{\sqrt{(a^2 + b^2)}}$

Second Method: The distance between the lines is $d = \frac{1}{\sqrt{(a^2 + b^2)}}$,

$$ax + by + c_2 = 0$$

$$O(0, 0)$$

- where (i) $\} \neq |c_1 c_2|$, if they be on the same side of origin.
 - (ii) $\} \neq |c_1| + |c_2|$, if the origin O lies between them.

Third method: Find the coordinates of any point on one of the given line, preferably putting x = 0 or y = 0. Then $ax + by + c_1 = 0$

putting x=0 or y=0. Then the perpendicular distance of this point from the other line is the required distance between the lines.

$$ax + by + c_1 = 0$$

 $.O(0, 0)$
 $ax + by + c_2 = 0$

Distance between two parallel lines $ax + by + c_1 = 0$, $kax + kby + c_2 = 0$ is $\frac{\left|c_1 - \frac{c_2}{k}\right|}{\sqrt{a^2 + b^2}}$. Distance between two non parallel lines is always zero.

