Conic Sections

11.2 Various Terms

Definition

The curves obtained by intersection of a plane and a double cone in different orientation are called conic section.

Definitions of various important terms

- (1) **Focus:** The fixed point is called the focus of the conic-section.
- (2) **Directrix:** The fixed straight line is called the directrix of the conic section.
- (3) **Eccentricity:** The constant ratio is called the eccentricity of the conic section and is denoted by e.
- (4) Axis: The straight line passing through the focus and perpendicular to the directrix is called the axis of the conic section. A conic is always symmetric about its axis.
- (5) Vertex: The points of intersection of the conic section and the axis are called vertices of conic section.
- (6) **Centre:** The point which bisects every chord of the conic passing through it, is called the centre of conic.
- (7) Latus-rectum: The latus-rectum of a conic is the chord passing through the focus and perpendicular to the axis.
- (8) **Double ordinate:** The double ordinate of a conic is a chord perpendicular to the axis.
 - (9) Focal chord: A chord passing through the focus of the conic is called a focal chord.
- (10) Focal distance: The distance of any point on the conic from the focus is called the focal distance of the point.

General equation of a conic section when its focus, directrix and eccentricity are given

Let S(r,s) be the focus, Ax + By + C = 0 be the directrix and e be the eccentricity of a conic. Let P(h,k) be any point on the conic. Let PM be the perpendicular from P, on the directrix. Then by definition,

$$\begin{array}{c|c}
 & P(h, k) \\
M & \\
 & S(r, s)
\end{array}$$

$$SP = ePM \implies SP^2 = e^2 PM^2$$

$$\implies (h-r)^2 + (k-s)^2 = e^2 \left(\frac{Ah + Bk + C}{\sqrt{A^2 + B^2}}\right)^2$$

Thus the locus of (h,k) is $(x-r)^2 + (y-s)^2 = e^2 \frac{(Ax+By+C)^2}{(A^2+B^2)}$,

which is general equation of second degree.

Recognisation of conics

The equation of conics is represented by the general equation of second degree $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ (i)

and discriminant of above equation is represented by Δ , where $\Delta = abc + 2fgh - af^2 - bg^2 - ch^2$ Case I: When $\Delta = 0$.

In this case equation (i) represents the degenerate conic whose nature is given in the following table.

Table: 18.1

S. No.	Condition	Nature of conic
1.	$\Delta = 0 \text{and} ab - h^2 = 0$	A pair of coincident straight lines
2.	$\Delta = 0 \text{ and } ab - h^2 < 0$	A pair of intersecting straight lines
3.	$\Delta = 0 \text{ and } ab - h^2 > 0$	A point

Case II: When $\Delta \neq 0$.

In this case equation (i) represents the non-degenerate conic whose nature is given in the following table.

Table : 18.2

S. No.	Condition	Nature of conic	
1.	$\Delta \neq 0, h = 0, a = b, e =$	A circle	
1	0		
2.	$\Delta \neq 0, ab - h^2 = 0, e = 1$	A parabola	
3.	$\Delta \neq 0, ab-h^2 > 0, e <$	An ellipse	
	1		
4.	$\Delta \neq 0, ab - h^2 < 0, e > 1$	A hyperbola	
5.	$\Delta \neq 0, ab - h^2 < 0$	A rectangular	
	$a+b=0$, $e=\sqrt{2}$	hyperbola	

