11.4 Ellipse

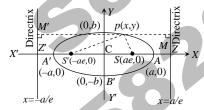
Definition

An ellipse is the locus of a point which moves in such a way that its distance from a fixed point is in constant ratio (<1) to its distance from a fixed line. The fixed point is called the **focus** and fixed line is called the **directrix** and the constant ratio is called the **eccentricity** of the ellipse, denoted by (e).

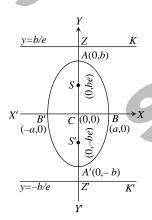
Standard equation of the ellipse

Let *S* be the focus, *ZM* be the directrix of the ellipse and P(x,y) is any point on the ellipse, then by definition $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, where $b^2 = a^2(1 - e^2)$.

Since e < 1, therefore $a^2(1-e^2) < a^2 \implies b^2 < a^2$.



The other form of equation of ellipse is $\frac{x^2}{y^2} + \frac{y^2}{b^2} = 1$, where, $a^2 = b^2(1 - e^2)i.e., a < b$.



Difference between both ellipses will be clear from the following table:

Table: 18.11

Ellipse	$\int x^2 + y^2$	
Imp. terms	$\left\{\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\right\}$	
terms	For $a > b$	For $b > a$
Centre	(0, 0)	(0, 0)
Vertices	(±a,0)	$(0,\pm b)$
Length of major axis	2 <i>a</i>	2 <i>b</i>
Length of minor axis	2 <i>b</i>	2 <i>a</i>
Foci	(±ae, 0)	(0,± be)
Equation of directrices	$x = \pm a/e$	$y = \pm b/e$
Relation in a , b and e	$b^2 = a^2(1 - e^2)$	$a^2 = b^2(1 - e^2)$
Length of latus rectum	$\frac{2b^2}{a}$	$\frac{2a^2}{b}$
Ends of latus-rectum	$\left(\pm ae,\pm \frac{b^2}{a}\right)$	$\left(\pm \frac{a^2}{b}, \pm be\right)$
Parametric equations	$(a\cos w, b\sin w)$	(acosw,b sinw)
Focal radii	$SP = a - ex_1$ $S'P = a + ex_1$	$(0 \le W < 2f)$ $SP = b - ey_1$ $S'P = b + ey_1$
Sum of focal radii $SP + S'P =$	2a	2 <i>b</i>
Distance between foci	2ae	2be
Distance between directrices	2 <i>a</i> / <i>e</i>	2 <i>b</i> / <i>e</i>
Tangents at the vertices	x = -a, x = a	y = b, y = -b

Parametric form of the ellipse

Let the equation of ellipse in standard form will be given by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

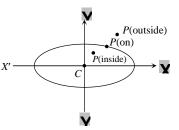
Then the equation of ellipse in the parametric form will be given by $x = a\cos w, y = b\sin w$, where w is the eccentric angle whose value vary from $0 \le w < 2f$. Therefore coordinate of any point P on the ellipse will be given by $(a\cos w, b\sin w)$.

Special forms of an ellipse

- (1) If the centre of the ellipse is at point (h,k) and the directions of the axes are parallel to the coordinate axes, then its equation is $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$.
- (2) If the equation of the curve is $\frac{(lx+my+n)^2}{a^2} + \frac{(mx-ly+p)^2}{b^2} = 1$, where lx+my+n=0 and mx-ly+p=0 are perpendicular lines, then we substitute $\frac{lx+my+n}{\sqrt{l^2+m^2}} = X$, $\frac{mx-ly+p}{\sqrt{l^2+m^2}} = Y$, to put the equation in the standard form.

Position of a point with respect to an ellipse

Let $P(x_1, y_1)$ be any point and let $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is the equation of an ellipse. The point lies outside, on or inside the ellipse as if $X' - S_1 = \frac{x_1^2}{a^2} + \frac{y_1^2}{b^2} - 1 > 0$



Intersection of a line and an ellipse

The line y = mx + c intersects the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in two distinct points if $a^2m^2 + b^2 > c^2$, in one point if $c^2 = a^2m^2 + b^2$ and does not intersect if $a^2m^2 + b^2 < c^2$.

Equations of tangent in different forms

- (1) **Point form:** The equation of the tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point (x_1, y_1) is $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$.
- (2) **Slope form:** If the line y = mx + c touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then $c^2 = a^2m^2 + b^2$. Hence, the straight line $y = mx \pm \sqrt{a^2m^2 + b^2}$ always represents the tangents to the ellipse.

Points of contact: Line $y = mx \pm \sqrt{a^2m^2 + b^2}$ touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at $\left(\frac{\pm a^2m}{\sqrt{a^2m^2 + b^2}}, \frac{\mp b^2}{\sqrt{a^2m^2 + b^2}}\right)$.

(3) **Parametric form:** The equation of tangent at any point $(a\cos w, b\sin w)$ is $\frac{x}{a}\cos w + \frac{y}{b}\sin w = 1$.