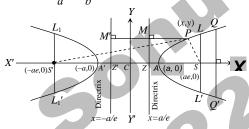
11.5 Hyperbola

Definition

A hyperbola is the locus of a point in a plane which moves in the plane in such a way that the ratio of its distance from a fixed point in the same plane to its distance from a fixed line is always constant which is always greater than unity.

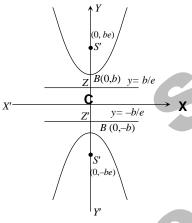
Standard equation of the hyperbola

Let S be the focus, ZM be the directrix and e be the eccentricity of the hyperbola, then by definition, $\frac{x^2}{c^2} - \frac{y^2}{L^2} = 1$, where $b^2 = a^2(e^2 - 1)$.



Conjugate hyperbola

The hyperbola whose transverse and conjugate axis are respectively the conjugate and transverse axis of a given hyperbola is called conjugate hyperbola of the given hyperbola.



Difference between both hyperbolas will be clear from the following table:

Ta	hl	Δ	•	1	Q	12
ı a	IJ	_	•	- 1 (o.	. 12

I. Hyperbola IMP. TERMS	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$	
Centre	(0, 0)	(0,0)	
Length of transverse axis	2a	2b	
Length of conjugate axis	2b	2a	
Foci	$(\pm ae, 0)$	$(0,\pm be)$	
Equation of directrices	$x = \pm a / e$	$y = \pm b / e$	
Eccentricity	$e = \sqrt{\left(\frac{a^2 + b^2}{a^2}\right)}$	$e = \sqrt{\left(\frac{a^2 + b^2}{b^2}\right)}$	
Length of latus rectum	$2b^2/a$	$2a^2/b$	
Parametric	$(a \sec w, b \tan w)$	$(b \sec w, a \tan w)$	
co-ordinates	$0 \leq \mathtt{W} < 2f$	$0 \le w < 2f$	
Focal radii	$SP = ex_1 - a$ $S'P = ex_1 + a$	$SP = ey_1 - b$ $S'P = ey_1 + b$	
Difference of focal radii (S'P – SP)	2 <i>a</i>	2b	
Tangents at the vertices	x = -a, x = a	y = -b, y = b	
Equation of the transverse axis	y = 0	x = 0	
Equation of the conjugate axis	x = 0	y = 0	

Special form of hyperbola

If the centre of hyperbola is (h, k) and axes are parallel to the co-ordinate axes, then its equation is $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$.

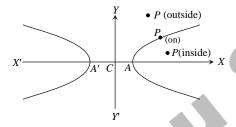
Parametric equations of hyperbola

The equations $x = a \sec w$ and $y = b \tan w$ are known as the parametric equations of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. This $(a \sec w, b \tan w)$ lies on the hyperbola for all values of w.

Position of a point with respect to a hyperbola

Let the hyperbola be $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

Then $P(x_1, y_1)$ will lie inside, on or outside the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ according as $\frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} - 1$ is positive, zero or negative.



Intersection of a line and a hyperbola

The straight line y = mx + c will cut the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ in two points may be real, coincident or imaginary according as $c^2 > 0.00 < 0.000 < 0.0000$

Condition of tangency: If straight line y = mx + c touches the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then $c^2 = a^2m^2 - b^2$.

Equations of tangent in different forms

- (1) **Point form:** The equation of the tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at (x_1, y_1) is $\frac{xx_1}{a^2} \frac{yy_1}{b^2} = 1$.
- (2) **Parametric form :** The equation of tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at $(a \sec w, b \tan w)$ is $\frac{x}{a} \sec w \frac{y}{b} \tan w = 1$.
- (3) **Slope form :** The equations of tangents of slope m to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ are $y = mx \pm \sqrt{a^2 m^2 b^2}$ and the co-ordinates of points of contacts are $\left(\pm \frac{a^2 m}{\sqrt{a^2 m^2 b^2}}, \pm \frac{b^2}{\sqrt{a^2 m^2 b^2}}\right)$.