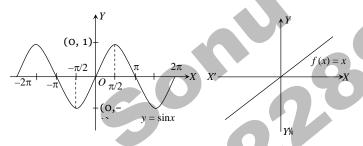
Introduction

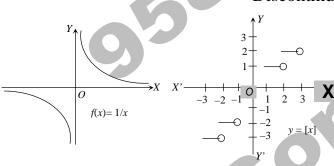
The word 'continuous' means without any break or gap. If the graph of a function has no break or gap or jump, then it is said to be continuous.

A function which is not continuous is called a discontinuous function. While studying graphs of functions, we see that graphs of functions $\sin x$, x, $\cos x$, e^x etc. are continuous but greatest integer function [x] has break at every integral point, so it is not continuous. Similarly $\tan x$, $\cot x$, $\sec x$, $\frac{1}{x}$ etc. are also discontinuous function.

Continuous function



Discontinuous function



Continuity of a function at a point

A function f(x) is said to be continuous at a point x = a of its domain if and only if it satisfies the following three conditions:

- (1) f(a) exists. ('a' lies in the domain of f)
- (2) $\lim_{x \to a} f(x)$ exist *i.e.* $\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{-}} f(x)$ or R.H.L. = L.H.L.
- (3) $\lim_{x \to a} f(x) = f(a)$ (limit equals the value of function).

Cauchy's definition of continuity: A function f is said to be continuous at a point a of its domain D if for every v > 0 there exists u > 0 (dependent on v) such that |x - a| < u $\Rightarrow |f(x) - f(a)| < v$.

Comparing this definition with the definition of limit we find that f(x) is continuous at x = a if $\lim_{x \to a} f(x)$ exists and is equal to f(a) i.e., if $\lim_{x \to a^-} f(x) = f(a) = \lim_{x \to a^+} f(x)$.

Continuity from left and right

Function f(x) is said to be

- (1) Left continuous at x = a if $\lim_{x \to a^{-}} f(x) = f(a)$
- (2) Right continuous at x = a if $\lim_{x \to a^+} f(x) = f(a)$.

Thus a function f(x) is continuous at a point x = a if it is left continuous as well as right continuous at x = a.

Properties of continuous functions: Let f(x) and g(x) be two continuous functions at x = a. Then

- (i) A function f(x) is said to be everywhere continuous if it is continuous on the entire real line R *i.e.* $(-\infty,\infty)$. e.g., polynomial function, e^x , $\sin x$, $\cos x$, constant, x^n , |x-a| etc.
 - (ii) Integral function of a continuous function is a continuous function.
- (iii) If g(x) is continuous at x = a and f(x) is continuous at x = g(a) then $(f \circ g)(x)$ is continuous at x = a.
 - (iv) If f(x) is continuous in a closed interval [a,b] then it is bounded on this interval.
- (v) If f(x) is a continuous function defined on [a, b] such that f(a) and f(b) are of opposite signs, then there is at least one value of x for which f(x) vanishes. i.e. if f(a) > 0, $f(b) < 0 \Rightarrow \exists c \in (a,b)$ such that f(c) = 0.

Discontinuous function

(1) **Discontinuous function**: A function 'f' which is not continuous at a point x = a in its domain is said to be discontinuous there at. The point 'a' is called a point of discontinuity of the function.

The discontinuity may arise due to any of the following situations.

- (i) $\lim_{x \to a^+} f(x)$ or $\lim_{x \to a^-} f(x)$ or both may not exist
- (ii) $\lim_{x \to a^{-1}} f(x)$ as well as $\lim_{x \to a^{-1}} f(x)$ may exist, but are unequal.
- (iii) $\lim_{x \to a^+} f(x)$ as well as $\lim_{x \to a^-} f(x)$ both may exist, but either of the two or both may not be equal to f(a).

