
2.5 Domain, co-domain and range of function

If a function f is defined from a set A to set B then for $f: A \to B$ set A is called the domain of function f and set B is called the co-domain of function f. The set of all f-images of the elements of A is called the range of function f.

In other words, we can say

Domain = All possible values of x for which f(x) exists.

Range = For all values of x, all possible values of f(x).

- (1) Methods for finding domain and range of function
- (i) **Domain**
- (a) Expression under even root (i.e., square root, fourth root etc.) ≥ 0 . Denominator $\neq 0$.

If domain of y = f(x) and y = g(x) are D_1 and D_2 respectively then the domain of $f(x) \pm g(x)$ or $f(x) \cdot g(x)$ is $D_1 \cap D_2$.

While domain of $\frac{f(x)}{g(x)}$ is $D_1 \cap D_2 - \{g(x) = 0\}$. Domain of $(\sqrt{f(x)}) = D_1 \cap \{x : f(x) \ge 0\}$

- (ii) Range: Range of y = f(x) is collection of all outputs f(x) corresponding to each real number in the domain.
 - (a) If domain \in finite number of points \Rightarrow range \in set of corresponding f(x) values
- (b) If domain $\in R$ or R [some finite points]. Then express x in terms of y. From this find y for x to be defined (i.e., find the values of y for which x exists).
 - (c) If domain \in a finite interval, find the least and greatest value for range using monotonicity.

