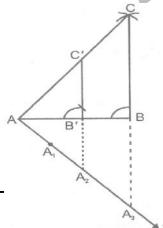
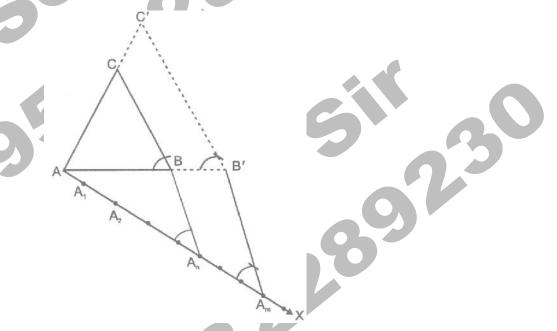

11.2 CONTRUCTION OF A TRIANGLE SIMILAR TO A GIVEN TRIANGLE


Scale Factor: The ratio of the sides of the triangle to be constructed with the corresponding sides of the given triangle is known as their scale factor.

- Steps of Construction when m<n:
- (i) Construct the given triangle ABC by using the given data.
- (ii) Take any one of the three side of the given triangle as base. Let AB be the base of the given triangle.
- (iii) At one end, say A, of base AB. Construct an acute angle ∠BAX below the base AB.
- (iv) Along AX mark of n points A_1 , A_2 , A_3 ,.... A_n such that $AA_1 = A_1A_2 = = A_{n-1}A_n$.
- (v) Join A_n B.
- (vi) Draw A_mB' parallel to A_n B which meets AB at B'.
- (vii) From B' draw B' C' CB meeting AC at C'.

Triangle AB'C' is the required triangle each of whose side is $\left(\frac{m}{n}\right)^{th}$ of the corresponding side of Δ ABC.

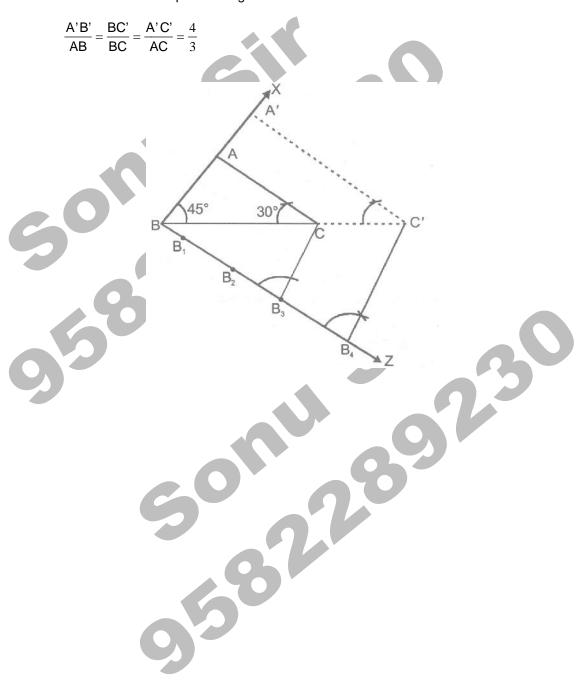
- **Ex.3** Construction a \triangle ABC in which AB = 5 cm, BC = 6 cm and AC = 7 cm. Now, construct a triangle similar to \triangle ABC such that each of its side is two-third of the corresponding side of \triangle ABC.
- Sol. Steps of Construction
 - (i) Draw a line segment AB = 5 cm.
 - (ii) With A as centre and radius AC = 7 cm, draw an arc.
 - (iii) With B as centre and BC= 6 cm, draw another arc, intersecting the arc draw in step (ii) at C.
 - (iv) Join AC and BC to obtain \triangle ABC.
 - (v) Below AB, make an acute angle ∠BAX.
 - (vi) Along AX, mark off three points (greater of 2 and 3 in $\frac{2}{3}$) A_1, A_2, A_3 such that $AA_1 = A_1A_2 = A_2A_3$.
 - (vi) Join A₃B.



- (iv) From B', draw B'C' BC, meeting AC at C'.

AB'C' is the required triangle, each of the whose sides is two-third of the corresponding sides of \triangle ABC.

Steps of Construction when m > n:


- (i) Construct the given triangle by using the given data.
- (ii) Take any of the three sides of the given triangle and consider it as the base. Let AB be the base of the given triangle.
- (iii) At one end, say A, of base AB construct an acute angle ∠BAX below base AB i.e. on the composite side of the vertex C.
- (iv) Along AX, mark-off m (large of m and n) points A_1 , A_2 ,.... A_m on AX such that $AA_1 = A_1A_2 = A_{m-1} A_m$.
- (v) Join A_n to B and draw a line through A_m parallel to A_n B, intersecting the extended line segment AB at B'.
- (vi) Draw a line through B' parallel to BC intersecting the extended line segment AC at C'.
- (vii) \triangle AB'C' so obtained is the required triangle.

- Ex.4 Draw a triangle ABC with side BC = 7 cm, \angle B = 45 $^{\circ}$, \angle A = 150 $^{\circ}$ Construct a triangle whose side are (4/3) times the corresponding side of \triangle ABC.
- **Sol.** In order to construct \triangle ABC, follow the following steps :
 - (i) Draw BC = 7 cm.
 - (ii) At B construct \angle CBX = 45° and at C construct \angle BCY = 180° $(45^{\circ} + 105^{\circ}) = 30^{\circ}$ Suppose BC and CY intersect at A. \triangle ABC so obtained is the given triangle.

- (iii) Construct an acute angle \angle CBZ at B on opposite side of vertex A of \triangle ABC.
- (iv) Mark-off four (greater of 4 and 3 in $\frac{4}{3}$) points, B₁,B₂,B₃,B₄ on BZ such that BB₂ B₁B₂ = V₂B₃ = B₃B₄.
- (v) Join B_3 (the third point) to C and draw a line through B_4 parallel to B_3C , intersecting the extended line segment BC at C'.
- (vi) Draw a line through C' parallel to CA intersecting the extended line segment BA at A' Triangle A'BC' so obtained is the required triangle such that

