3.2 System of measurement of angles

There are three system for measuring angles

(1) **Sexagesimal or English system:** Therefore,

1 right angle = $90 \text{ degree} (= 90^{\circ})$

 $1^{\circ} = 60 \text{ minutes } (= 60')$

1' = 60 second (=60'')

(2) Centesimal or French system: Therefore,

1 right angle = 100 grades (= 100^g)

1 grade = 100 minutes (= 100')

1 minute = 100 seconds (= 100")

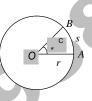
(3) Circular system: The measure of an angle subtended at the centre of a circle by an arc of length equal to the radius of the circle.

Consider a circle of radius r having centre at O. Let A be a point on the circle. Now cut off an arc AP whose length is equal to the radius r of the circle. Then by the definition the measure of $\angle AOP$ is 1 radian $(=1^c)$.

Relation between three systems of measurement of an angle

Let D be the number of degrees, R be the number of radians and G be the number of grades in an angle $_{\prime\prime}$, then

$$\frac{D}{90} = \frac{G}{100} = \frac{2R}{f}$$


This is the required relation between the three systems of measurement of an angle.


Therefore, one radian = $\frac{180^{\circ}}{f} \Rightarrow f \text{ radians} = 180^{\circ}$

i.e., 1 radian = $57^{\circ}17'44.8'' \approx 57^{\circ}17'45''$.

Relation between an arc and an angle

If s is the length of an arc of a circle of radius r, then the angle $_{*}$ (in radians) subtended by this arc at the centre of the circle is given

by
$$= \frac{s}{r}$$
 or $s = r\theta$.

i.e., Arc = radius \times angle in radians

Sectorial area: Let *OAB* be a sector having central angle r and radius r. Then area of the sector *OAB* is given by $\frac{1}{2}r^2\theta$.

Domain and range of a trigonometrical function

If $f: X \to Y$ is a function, defined on the set X, then the **domain** of the function f, written as Domf is the set of all independent variables x, for which the image f(x) is well defined element of Y, called the co-domain of f.

Range of $f: X \to Y$ is the set of all images f(x) which belongs to Y, *i.e.*, Range $f = \{f(x) \in Y : x \in X\} \subseteq Y$.

The domain and range of trigonometrical functions are tabulated as follows:

Table: 10.1

Trigonometrical Function	<u>Domain</u>	Range
	R	$-1 \le \sin x \le 1$
$\sin x$		
cos x	R	$-1 \le \cos x \le 1$
tan x	$R - \left\{ (2n+1)\frac{f}{2}, n \in I \right\}$	R
cosec x	$R-\{nf,n\in I\}$	$R - \{x : -1 < x < 1\}$
sec x	$R - \left\{ (2n+1)\frac{f}{2}, n \in I \right\}$	$R - \{x : -1 < x < 1\}$
cot x	$R - \{nf, n \in I\}$	R
	95877	

