5.2 Algebraic operations with complex numbers

Let two complex numbers $bc z_1 = a + ib$ and $z_2 = c + id$

Addition $(z_1 + z_2)$: (a+ib)+(c+id)=(a+c)+i(b+d)

Subtraction $(z_1 - z_2)$: (a+ib)-(c+id) = (a-c)+i(b-d)

Multiplication $(z_1.z_2)$: (a+ib)(c+id) = (ac-bd)+i(ad+bc)

Division (z_1/z_2) : $\frac{a+ib}{c+id}$

(where at least one of *c* and *d* is non-zero)

$$\frac{a+ib}{c+id} = \frac{(a+ib)}{(c+id)} \cdot \frac{(c-id)}{(c-id)} \quad (Rationalization)$$

$$\frac{a+ib}{c+id} = \frac{(ac+bd)}{c^2+d^2} + \frac{i(bc-ad)}{c^2+d^2}.$$

Properties of algebraic operations on complex numbers: Let z_1, z_2 and z_3 are any three complex numbers then their algebraic operations satisfy following properties:

(i) Addition of complex numbers satisfies the commutative and associative properties

i.e., $z_1 + z_2 = z_2 + z_1$ and $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$.

(ii) Multiplication of complex numbers satisfies the commutative and associative properties.

i.e., $z_1z_2 = z_2z_1$ and $(z_1z_2)z_3 = z_1(z_2z_3)$.

(iii) Multiplication of complex numbers is distributive over addition

i.e., $z_1(z_2+z_3)=z_1z_2+z_1z_3$ and $(z_2+z_3)z_1=z_2z_1+z_3z_1$.

Equality of two complex numbers

Two complex numbers $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ are said to be equal if and only if their real and imaginary parts are separately equal.

i.e.,
$$z_1 = z_2 \Leftrightarrow x_1 + iy_1 = x_2 + iy_2 \Leftrightarrow x_1 = x_2$$
 and $y_1 = y_2$.

Complex numbers do not possess the property of order *i.e.*, (a+ib) < (or) > (c+id) is not defined. For example, the statement (9+6i) > (3+2i) makes no sense.

