CHAPTER – 6 Linear Inequations

EXAMPLE - 1

Solve 24x < 100, when

(i) x is a natural number.

(ii) x is an integer.

Solution: We have,

$$\Rightarrow$$

$$\frac{24x}{24} < \frac{100}{24}$$

[On dividing both sides by 24]

$$\Rightarrow$$

$$X < \frac{25}{6}$$

(i) Given that x is a natural number, i.e., $x \in N$

Hence, the solution set of given inequality = $\left\{x \in \mathbb{N} : x < \frac{25}{6}\right\}$ = {1, 2, 3, 4}.

(ii) Given that x is an integer, i.e., $x \in Z$.

Hence, the solution set of given inequality = $\left\{x \in Z : x < \frac{25}{6}\right\}$

$$= \{..., -2, -1, 0, 1, 2, 3, 4\}.$$

EXAMPLE - 2

Solve -12x > 30, when

(i) x is a natural number.

(ii) x is an integer.

Solution: We have,

$$-12x > 30$$

$$\Rightarrow$$

$$\frac{-12x}{-12} < \frac{30}{-12}$$

[On dividing both sides by -12]

$$\Rightarrow$$

$$X < -\frac{5}{2}$$

(i) Given that x is a natural number, i.e., $x \in N$.

Hence, the solution set of given inequality = $\left\{x \in \mathbb{N} : x < -\frac{5}{2}\right\} = \left\{\right\}$

(ii) Given that x is an integer, i.e., $x \in Z$.

Hence, the solution set of given inequality = $\left\{x \in Z : x < -\frac{5}{2}\right\}$

EXAMPLE - 3

Solve 3x + 8 > 2, when

(i) x is an integer.

(ii) x is a real number.

Solution: We have,

$$3x + 8 > 2$$

$$\Rightarrow$$

$$3x + 8 - 8 > 2 - 8$$

$$\Rightarrow$$

$$3x > -6$$

$$\Rightarrow \qquad \frac{3x}{x} > \frac{-6}{3}$$

⇒ (i)

$$x > 3$$

 $x > -2$

Given that x is an integer, i.e.,
$$x \in Z$$
.

Hence, the solution set of given inequality = $\{x \in Z ; x > -2\} = \{-1, 0, 1, ...\}$.

(ii) Given that x is a real number, i.e., $x \in R$. Hence, the solution set of given inequality = $\{x \in R ; x > -2\} = (-2, \infty)$

EXAMPLE - 4

Solve 5x - 3 < 3x + 1, when

(i) x is an integer.

(ii) x is a real number.

Solution: We have,

$$5x - 3 < 3x + 1$$

 \Rightarrow 5x - 3 - 3x < 3x + 1 - 3x [On subtracting 3x from both sides]

 \Rightarrow 2x - 3 < 1

 \Rightarrow 2x - 3 + 3 < 1 + 3 [On adding 3 on both sides]

 \Rightarrow 2x < 4

 $\Rightarrow \frac{2x}{2} < \frac{4}{2}$ $\Rightarrow x \le 2$ [On dividing both sides by 2]

(i) Given that x is an integer, i.e., $x \in Z$. Hence, the solution set of given inequality = $\{x \in Z : x < 2\}$

 $= \{..., -2, -1, 0, 1\}.$

(ii) Given that x is a real number, i.e., $x \in R$. Hence, the solution set of given inequality = $\{x \in R : x < 2\} = (-\infty, 2)$.

EXAMPLE - 5

Solve the following inequalities for real x:

(i) $3(2 - x) \ge 2(1 - x)$.

$$(ii) \frac{5-2x}{3} \le \frac{x}{6} - 5$$

(iii)
$$\frac{1}{2} \left(\frac{3x}{5} + 4 \right) \ge \frac{1}{3} (x - 6)$$

(iv)
$$\frac{2x-1}{3} \ge \frac{3x-2}{4} - \frac{2-x}{5}$$

Solution:

- (i) The solution set of given inequality = $\{x \in R : x \le 4\} = (-\infty, 4]$.
- (ii) The solution set of given inequality = $\{x \in R : x \ge 8\} = [8, \infty)$.
- (iii) The solution set of given inequality = $\{x \in R : x \le 120\} = (-\infty, 120]$
- (iv) The solution set of given inequality = $\{x \in R : x \le 2\} = (-\infty, 2]$

Example - 6

Solve the following inequalities and show the graph of the solution (in each case) on number line:

(i)
$$7x + 3 < 5x + 9$$

(ii)
$$3x - 2 \le 2x + 1$$

(iii)
$$3(1 - x) < 2(x + 4)$$

(iv)
$$\frac{3x-4}{2} \ge \frac{x+1}{4} - 1$$

Solution:

- (i) The solution set of given inequality = $\{x \in R : x < 3\} = (-\infty, 3)$.
- (ii) The solution set of given inequality = $\{x \in R : x \le 3\} = (-\infty, 3]$.
- (iii) The solution set of given inequality = $\{x \in R : x > -1\} = (-1, \infty)$
- (iv) The solution set of given inequality = $\{x \in R : x \ge 1\} = [1, \infty)$

6.1.1 Compound Inequalities

Example - 1

Solve the following inequalities for real x:

(i)
$$-8 \le 5x - 3 < 7$$

(ii)
$$6 \le -3(2x - 4) < 12$$
.

(iii)
$$-3 \le 4 - \frac{7x}{2} \le 18$$

(iv)
$$-15 < \frac{3(x-2)}{5} \le 0$$

Solution:

- (i) The solution set of given inequality = $\{x \in R : x < 2\} = [-1, 2)$.
- (ii) The solution set of given inequality = $\{x \in R : 1 \ge x > 0\} = (0, 1]$.
- (iii) The solution set of given inequality = $\{x \in \mathbb{R} : 2 \ge x \ge -4\} = [-4, 2]$
- (iv) The solution set of given inequality = $\{x \in R : -23 < x \le 2\} = (-23, 2]$

Example - 2

Solve the following inequalities and show the graph of the solution (in each case) on number line:

(i)
$$3x - 7 > 2(x - 6)$$
, $6 - x > 11 - 2x$

(ii)
$$5(2x-7) - 3(2x+3) \le 0$$
, $2x + 19 \le 6x + 47$

Solution:

- (i) The solution set of given inequality = $\{x \in R : x > -5, x > 5\} = (5, \infty)$.
- (ii) The solution set of given inequality = $\{x \in R : x \le 11, x \ge -7\} = [-7, 11]$.

6.1.2 Absolute-Value Inequalities

Example - 1

Solve the real x: |2x| < 4

Solution:

Case I When $x \ge 0$

In this case, the solution set = $\{x \in R : x \ge 0 \text{ and } x < 2\} = [0, 2)$

Case II When x < 0

In this case, the solution set = $\{x \in R : x < 0 \text{ and } x > -2\} = (-2, 0)$

Hence, the solution set of given inequality = $[0, 2) \cup (-2, 0) = (-2, 2)$

Example - 2

Solve the real x: $|x - 2| \le 3$

Solution:

Case I When $x \ge 2$

In this case, the solution set = $\{x \in R : x \ge 2 \text{ and } x \le 5\} = [2, 5]$

Case II When x < 2

In this case, the solution set = $\{x \in R : x < 2 \text{ and } x \ge -1\} = [-1, 2)$

Hence, the solution set of given inequality = $[2, 5] \cup [-1, 2) = [-1, 5]$

Example - 3

Solve the real x: |2x - 5| > 1

Solution:

Case I When $x \ge \frac{5}{2}$

In this case, the solution set = $\{x \in R : x \ge \frac{5}{2} \text{ and } x > 3\} = (3, \infty)$

Case II When $x < \frac{5}{2}$

In this case, the solution set = $\{x \in \mathbb{R} : x < \frac{5}{2} \text{ and } x < 2\} = (-\infty, 2)$

Hence, the solution set of given inequality = $(3, \infty) \cup (-\infty, 2)$

Example - 4

Solve the real x: $|3 - 4x| \ge 9$

Solution:

Case I When $x \le \frac{3}{4}$

In this case, the solution set = $\{x \in \mathbb{R} : x \le \frac{3}{4} \text{ and } x \le -\frac{3}{2}\} = (-\infty, -\frac{3}{2})$

Case II When $x > \frac{3}{4}$

In this case, the solution set = $\{x \in R : x > \frac{3}{4} \text{ and } x \ge 3\} = [3, \infty)$

Hence, the solution set of given inequality = $\left\{x \in \mathbb{R} : x \geq 3 \text{ or } x \leq -\frac{3}{2}\right\}$ = $\left(-\infty, -\frac{3}{2}\right] \cup [3, \infty)$

HOTS (Higher Order Thinking Skills)

Example H - 1

Solve the real x: $1 \le |x - 2| \le 3$

Solution:

Case I When $x \ge 2$

In this case, the solution set = $\{x \in R : x \ge 2 \text{ and } 3 \le x \le 5\} = [3, 5]$

Case II When x < 2

In this case, the solution set = $\{x \in R : x < 2 \text{ and } -1 \le x \le 1\} = [-1, 1]$

Hence, the solution set of given inequality = $[3, 5] \cup [-1, 1]$

Example H - 2

Solve the real x: |x + 1| + |x| > 3

Solution:

Case I When x < -1

In this case, the solution set = $\{x \in R : x < -1 \text{ and } x < -2\}$ = $(-\infty, -2)$

Case II When $-1 \le x < 0$

In this case, the solution set = ϕ

Case III When $x \ge 0$

In this case, the solution set = $\{x \in R : x \ge 0 \text{ and } x > 1\} = (1, \infty)$

Hence, the solution set of given inequality = $(-\infty, -2) \cup (1, \infty)$

Example H - 3

Solve the real x:
$$\frac{|x+3|+x}{x+2} > 1$$
, $x \ne -2$

Solution:

Case I When $x \ge -3$

In this case, the solution set = $\{x \in R : x \ge -3 \text{ and } x \in (-\infty, -2) \cup (-1, \infty)\}$ = $[-3, -2) \cup (-1, \infty)$.

Case II When x < -3

In this case, the solution set = $\{x \in R : x < -3 \text{ and } (-5, -2)\} = (-5, -3)$

Hence, the solution set of given inequality = $[-3, -2) \cup (-1, \infty) \cup (-5, -3)$ = $(-5, -2) \cup (-1, \infty)$

Exercise 6.1

- 1. Solve 30x < 200, when
 - (i) x is a natural number.
- (ii) x is an integer.
- 2. Solve 5x - 3 < 7, when
 - (i) x is an integer.

- (ii) x is a real number.
- Solve the following inequalities for real x: 3.
 - (i) 4x + 3 < 6x + 7.

(ii) $3(x - 1) \le 2(x - 3)$.

(iii) $\frac{x}{2} > \frac{x}{2} + 1$.

- (iv) $\frac{x}{4} < \frac{5x-2}{3} \frac{7x-3}{5}$
- (v) 2(2x + 3) 10 < 6(x 2).
- Solve the following inequalities and show the graph of the solution (in each case) on 4. number line:
 - (i) $5x 3 \ge 3x 5$.

- (ii) $\frac{x}{2} < \frac{5x-2}{3} \frac{7x-3}{5}$
- 5. Solve the following inequalities for real x:
 - (i) 3x 7 > 5x 1.

(ii) 37 - (3x + 5) > 9x - 8(x - 3).

(iii) $\frac{3(x-2)}{5} \le \frac{5(2-x)}{3}$

(iv) $x + \frac{x}{2} + \frac{x}{3} < 11$.

(v) $2 \le 3x - 4 \le 5$.

- (vi) $-5 \le \frac{5-3x}{2} \le 8$.
- (vii) $-12 < 4 + \frac{3x}{5} \le 2$.
- (viii) $7 \le \frac{3x+11}{2} \le 11$.
- Solve the following inequalities and show the graph of the solution (in each case) on 6. number line:
 - (i) 3x 7 < 5 + x, $11 5x \le 1$
 - (ii) 5x + 1 > -24, 5x 1 < 24.
 - (iii) 2(x 1) < x + 5, 3(x + 2) > 2 x.
- Solve for real x: |x 1| > 5. 7.
- Solve for real x: $|x + 2| \le 9$. 8.
- Solve for real x: $|x + 3| \ge 10$. 9.
- Solve for real x: $|x 1| \le 5$, $|x| \ge 2$. 10.

Answers 6.1

(ii) (-∞, 2)

(ii) $(-\infty, -3]$

(v) $(4, \infty)$

- 1. (i) {1, 2, 3, 4, 5, 6}
- 2. (i) $\{\dots, -2, -1, 0, 1\}$
- 3. (i) $(-2, \infty)$
 - (iv) $(4, \infty)$
- (i) $[-1, \infty)$ 4.

6.

7.

- 5. (i) $(-\infty, -3)$
 - - (v) [2, 3]

(i) [2, 6)

- (ii) (-∞, 2) (vi) $\left[-\frac{11}{3}, 5\right]$
- (ii) (-5, 5)
- (ii) $(-\infty, -\frac{2}{7})$ (iii) $(-\infty, 2]$
 - (vii) $\left(-\frac{80}{3}, -\frac{10}{3}\right]$ (viii) $\left[1, \frac{11}{3}\right]$

(ii) {..., -3, -2, -1, 0, 1, 2, 3, 4, 5, 6}

(iv) $(-\infty, 6)$

(iii) $(-\infty, -6)$

(iii) (-1, 7)

 $(-\infty, -4) \cup (6, \infty)$

A Place of Knowledge

8. [-11, 7]

9. $(-\infty, -13] \cup [7, \infty)$

10. [-4, -2] ∪ [2, 6]

