7.4 Combinations

Definition

Each of the different groups or selections which can be formed by taking some or all of a number of objects, irrespective of their arrangements, is called a combination.

Notation: The number of all combinations of n things, taken r at a time is denoted by C(n,r) or nC_r or ${n \choose r}$.

 ${}^{n}C_{r}$ is always a natural number.

Difference between a permutation and combination:

- (i) In a combination only selection is made whereas in a permutation not only a selection is made but also an arrangement in a definite order is considered.
- (ii) Each combination corresponds to many permutations. For example, the six permutations *ABC*, *ACB*, *BCA*, *BAC*, *CBA* and *CAB* correspond to the same combination *ABC*.

Number of combinations without repetition

The number of combinations (selections or groups) that can be formed from n different objects taken $r(0 \le r \le n)$ at a time is ${}^nC_r = \frac{n!}{r!(n-r)!}$. Also ${}^nC_r = {}^nC_{n-r}$.

Let the total number of selections (or groups) = x. Each group contains r objects, which can be arranged in r! ways. Hence the number of arrangements of r objects = $x \times (r!)$. But the number of arrangements = ${}^{n}P_{r}$.

$$\Rightarrow x(r!) = {}^{n}P_{r} \Rightarrow x = \frac{{}^{n}P_{r}}{r!} \Rightarrow x = \frac{n!}{r!(n-r)!} = {}^{n}C_{r}.$$

Number of combinations with repetition and all possible selections

- (1) The number of combinations of n distinct objects taken r at a time when any object may be repeated any number of times.
 - = Coefficient of x^r in $(1+x+x^2+.....+x^r)^n$
 - = Coefficient of x^r in $(1-x)^{-n} = {n+r-1 \choose r}$
- (2) The total number of ways in which it is possible to form groups by taking some or all of n things at a time is ${}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n} = 2^{n} 1$.
- (3) The total number of ways in which it is possible to make groups by taking some or all out of $n = (n_1 + n_2 +)$ things, when n_1 are alike of one kind, n_2 are alike of second kind, and so on is $\{(n_1 + 1)(n_2 + 1).....\}$ 1.

- (4) The number of selections of r objects out of n identical objects is 1.
- (5) Total number of selections of zero or more objects from n identical objects is n+1.
- (6) The number of selections taking at least one out of $a_1 + a_2 + a_3 + \dots + a_n + k$ objects, where a_1 are alike (of one kind), a_2 are alike (of second kind) and so on..... a_n are alike (of nth kind) and k are distinct

= $[(a_1 + 1)(a_2 + 1)(a_3 + 1)....(a_n + 1)]2^k - 1$.

