CHAPTER – 8 Binomial Theorem

8.1 INTRODUCTION

Binomial expression

An algebraic expression consisting of two terms with +ve or -ve sign between them is called a binomial expression.

For example: $(a+b),(2x-3y),(\frac{p}{x^2}-\frac{q}{x^4}),(\frac{1}{x}+\frac{4}{y^3})$ etc.

Binomial theorem for positive integral index

The rule by which any power of binomial can be expanded is called the binomial theorem.

If *n* is a positive integer and x, $y \in C$ then

$$(x+y)^n = {^nC_0}x^{n-0}y^0 + {^nC_1}x^{n-1}y^1 + {^nC_2}x^{n-2}y^2 + \dots + {^nC_r}x^{n-r}y^r + \dots + {^nC_{n-1}}xy^{n-1} + {^nC_n}x^0y^n$$

i.e.,
$$(x+y)^n = \sum_{r=0}^n {}^n C_{r.} x^{n-r} y^r$$
(i)

Here ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$,....., ${}^{n}C_{n}$ are called binomial coefficients and ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ for $0 \le r \le n$.

Some important expansions

(1) Replacing y by -y in (i), we get,

$$(x-y)^n = {^nC_0}x^{n-0}y^0 - {^nC_1}x^{n-1}y^1 + {^nC_2}x^{n-2}y^2 - \dots + (-1)^{r-n}C_rx^{n-r}y^r + \dots + (-1)^{n-n}C_nx^0y^n$$

$$i.e., (x-y)^n = \sum_{r=0}^n (-1)^{r-n} C_r x^{n-r} y^r$$

The terms in the expansion of $(x-y)^n$ are alternatively positive and negative, the last term is positive or negative according as n is even or odd.

(2) Replacing x by 1 and y by x in equation (i) we get, $(1+x)^n = {}^nC_0x^0 + {}^nC_1x^1 + {}^nC_2x^2 + \dots + {}^nC_nx^n + \dots + {}^nC_nx^n$

i.e.,
$$(1+x)^n = \sum_{r=0}^n {^nC_r}x^r$$

This is expansion of $(1+x)^n$ in ascending power of x.

(3) Replacing x by 1 and y by -x in (i) we get,

$$(1-x)^n = {^nC_0}x^0 - {^nC_1}x^1 + {^nC_2}x^2 - \dots + (-1)^{r} {^nC_r}x^r + \dots + (-1)^n {^nC_r}x^n$$

$$i.e., (1-x)^n = \sum_{r=0}^n (-1)^{r} {}^n C_r x^r$$

(4)
$$(x+y)^n + (x-y)^n = 2[^nC_0x^ny^0 + ^nC_2x^{n-2}y^2 + ^nC_4x^{n-4}y^4 +]$$
 and $(x+y)^n - (x-y)^n = 2[^nC_1x^{n-1}y^1 + ^nC_3x^{n-3}y^3 + ^nC_5x^{n-5}y^5 + ...]$ (5) The coefficient of $(r+1)^{th}$ term in the expansion of $(1+x)^n$ is nC_r .

- (6) The coefficient of x^r in the expansion of $(1+x)^n$ is nC_r .

