8.2 General term

The general term of the expansion is $(r+1)^{th}$ term usually denoted by T_{r+1} and $T_{r+1} = {}^{n}C_{r}x^{n-r}y^{r}$

- In the binomial expansion of $(x-y)^n$, $T_{r+1} = (-1)^r {^n}C_r x^{n-r} y^r$
- In the binomial expansion of $(1 + x)^n$, $T_{r+1} = {}^nC_rx^r$
- In the binomial expansion of $(1-x)^n$, $T_{r+1} = (-1)^{r} {}^n C_r x^r$
- In the binomial expansion of $(x+y)^n$, the p^{th} term from the end is $(n-p+2)^{th}$ term from beginning.

Independent term or Constant term

Independent term or constant term of a binomial expansion is the term in which exponent of the variable is zero.

Condition: (n-r) [Power of x] + r [Power of y] = 0, in the expansion of $[x+y]^n$.

Number of terms in the expansion of $(a+b+c)^n$ and $(a+b+c+d)^n$

$$(a+b+c)^n$$
 can be expanded as: $(a+b+c)^n = \{(a+b)+c\}^n$

$$= (a+b)^n + {^nC_1(a+b)^{n-1}(c)^1} + {^nC_2(a+b)^{n-2}(c)^2} + \dots + {^nC_n c^n}$$

$$= (n+1)$$
term $+ n$ term $+ (n-1)$ term $+ ... + 1$ term

:. Total number of terms =
$$(n+1)+(n)+(n-1)+.....+1=\frac{(n+1)(n+2)}{2}$$
.

Similarly, number of terms in the expansion of

$$(a+b+c+d)^n = \frac{(n+1)(n+2)(n+3)}{6}$$
.

