9.3 Geometric Progression (G.P.)

Definition

A progression is called a G.P. if the ratio of its each term to its previous term is always constant. This constant ratio is called its common ratio and it is generally denoted by r.

Example: The sequence 4, 12, 36, 108, is a G.P., because $\frac{12}{4} = \frac{36}{12} = \frac{108}{36} = \dots = 3$, which is constant.

Clearly, this sequence is a G.P. with first term 4 and common ratio 3.

The sequence $\frac{1}{3}$, $-\frac{1}{2}$, $\frac{3}{4}$, $-\frac{9}{8}$,... is a G.P. with first term $\frac{1}{3}$ and common ratio $\left(-\frac{1}{2}\right)\left/\left(\frac{1}{3}\right) = -\frac{3}{2}$.

General term of a G.P.

(1) We know that, $a, ar, ar^2, ar^3, \dots ar^{n-1}$ is a sequence of G.P.

Here, the first term is 'a' and the common ratio is 'r'.

The general term of n^{th} term of a G.P. is $T_n = ar^{n-1}$.

It should be noted that, $r = \frac{T_2}{T_1} = \frac{T_3}{T_2} = \dots$.

(2) p^{th} term from the end of a finite G.P.: If G.P. consists of 'n' terms, p^{th} term from the end = $(n-p+1)^{th}$ term from the beginning = ar^{n-p} .

Also, the p^{th} term from the end of a G.P. with last term l and common ratio r is $l\left(\frac{1}{r}\right)^{n-1}$

Selection of terms in a G.P.

(1) When the product is given, the following way is adopted in selecting certain number of terms :

Table 3

Number of terms	Terms to be taken
3	$\frac{a}{r}$, a, ar
4	$\frac{a}{r^3}, \frac{a}{r}, ar, ar^3$

Number of terms	Terms to be taken
5	$\frac{a}{r^2}$, $\frac{a}{r}$, a , ar , ar^2

(2) When the product is not given, then the following way is adopted in selection of terms

Table 4

Num	ber of terms	Terms to be taken
3		a, ar, ar ²
4		a, ar, ar^2, ar^3
5		a, ar, ar^2, ar^3, ar^4

Sum of first 'n' terms of a G.P.

If a be the first term, r the common ratio, then sum s_n of first n terms of a G.P. is given by

$$S_n = \frac{a(1-r^n)}{1-r}$$
 and $S_n = \frac{a-lr}{1-r}$, (when $|r| < 1$)

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
 and $S_n = \frac{lr - a}{r - 1}$, (when $|r| > 1$)

$$S_n = na$$
, (when $r = 1$)

Sum of infinite terms of a G.P.

- (1) When |r| < 1, (or -1 < r < 1); $S_{\infty} = \frac{a}{1 r}$
- (2) If $r \ge 1$, then s_{∞} doesn't exist.

Geometric mean

If a, G, b are in G.P., then G is called G.M. between a and b.

- (1) If $a, G_1, G_2, G_3, \dots, G_n, b$ are in G.P. then $G_1, G_2, G_3, \dots, G_n$ are called n G.M.'s between a and b.
- (2) Insertion of geometric means: (i) Single G.M. between a and b: If a and b are two real numbers then single G.M. between a and $b = \sqrt{ab}$.
 - (ii) **n G.M.'s between a and b:** If $G_1, G_2, G_3, \dots, G_n$ are n G.M.'s between a and b, then

$$G_1 = ar = a \left(\frac{b}{a}\right)^{\frac{1}{n+1}}, \quad G_2 = ar^2 = a \left(\frac{b}{a}\right)^{\frac{2}{n+1}},$$

$$G_3 = ar^3 = a \left(\frac{b}{a}\right)^{\frac{3}{n+1}}, \quad \dots, \quad G_n = ar^n = a \left(\frac{b}{a}\right)^{\frac{n}{n+1}}.$$

Properties of G.P.

- (1) If all the terms of a G.P. be multiplied or divided by the same non-zero constant, then it remains a G.P., with the same common ratio.
- (2) The reciprocal of the terms of a given G.P. form a G.P. with common ratio as reciprocal of the common ratio of the original G.P.
- (3) If each term of a G.P. with common ratio r be raised to the same power k, the resulting sequence also forms a G.P. with common ratio r^k .
- (4) In a finite G.P., the product of terms equidistant from the beginning and the end is always the same and is equal to the product of the first and last term. *i.e.*, if $a_1, a_2, a_3, \dots a_n$ be in G.P.

Then $a_1 a_n = a_2 a_{n-1} = a_3 a_{n-2} = a_4 a_{n-3} = \dots = a_r a_{n-r+1}$

- (5) If the terms of a given G.P. are chosen at regular intervals, then the new sequence so formed also forms a G.P.
- (6) If $a_1, a_2, a_3, \dots, a_n$ is a G.P. of non-zero, non-negative terms, then $\log a_1, \log a_2, \log a_3, \dots \log a_n$ is an A.P. and vice-versa.
 - (7) Three non-zero numbers a, b, c are in G.P., iff $b^2 = ac$.
- (8) If first term of a G.P. of *n* terms is *a* and last term is *l*, then the product of all terms of the G.P. is $(al)^{n/2}$.
- (9) If there be *n* quantities in G.P. whose common ratio is *r* and s_m denotes the sum of the first *m* terms, then the sum of their product taken two by two is $\frac{r}{r+1}s_n s_{n-1}$.
 - (10) If $a^{x_1}, a^{x_2}, a^{x_3}, \dots, a^{x_n}$ are in G.P., then $x_1, x_2, x_3, \dots, x_n$ will be are in A.P.,

