14.4 MODE

Mode or modal value of the distribution is that value of variable for which the frequency is maximum.

Mode of ungrouped data : - (By inspection only)

Arrange the data in an array and then count the frequencies of each variate.

The variate having maximum frequency is the mode.

Mode of continuous frequency distribution

$$\text{Mode} = \ \ell + \frac{\textbf{f}_1 + \textbf{f}_0}{2\textbf{f}_1 - \textbf{f}_0 - \textbf{f}_2} \times \textbf{h}$$

Where ℓ = lower limit of the modal class

 f_1 = frequency of the class i.e. the largest frequency.

 f_0 = frequency of the class preceding the modal class.

 f_2 = frequency of the class succeeding the modal class.

h = width of the modal class

Ex.12. Fin the mode of the following data:

25, 16, 19, 48, 19, 20, 34, 15, 19, 20, 21, 24, 19, 16, 22, 16, 18, 20, 16, 19.

Sol. Frequency table for the given data as given below :

Value x _i	15	16	18	19	20	21	22	24	25	34	48
Frequency f _i	1	4	1	5	3	1	1	1	1	1	1

19 has the maximum frequency of 5. So, Mode = 19.

Ex.13. The following table shows the age distribution of cases of a certain disease admitted during a year in a particular hospital.

Age (in Years)	5-14	15-24	25-34	35-44	45-54	55-64
No. of Cases	6	11	21	23	14	5

Sol. Here class intervals are not is inclusive form. So, Converting the above frequency table in inclusive form.

Age (in Years)	4.5-14.5	14.5-24.5	24.5-34.5	34.5-44.5	44.5-54.5	54.5-64.5
No. of Cases	6	11	21	23	14	5

Class 34.5 - 44.5 has maximum frequency. So it is the modal class.

$$\ell$$
 34.5, h = 10, f_0 = 21, f_1 = 23 and f_2 = 14.

$$\therefore \qquad \mathsf{Mode} = \ell + \frac{\mathsf{f}_1 - \mathsf{f}_0}{2\mathsf{f}_1 - \mathsf{f}_0 - \mathsf{f}_2} \times \mathsf{h}$$

Mode = 34.5 +
$$\frac{23-21}{46-21-14} \times 10$$

$$= 34.5 + \frac{2}{11} \times 10$$

= 36.31 Ans.

Ex.14 Find the mode of following distribution:

Daily Wages	31-36	37-42	43-48	49-54	55-60	61-66
No. of workers	6	12	20	15	9	4

Sol.

Daily Wages	No. of workers	Daily wages	No of workers
31-36	6	30.5-36.5	6
37-43	12	36.5-42.5	12
43-48	20	42.5-48.5	20
49-54	15	48.5-54.5	15
55-60	9	54.5-60.6	9
61-66	4	60.5-66.5	4

Modal class frequency is 42.5 - 48.5.

$$\ell = 42.5$$

$$f_1 = 20$$

$$f_0 = 12, f_2 = 15, h = 6$$

:. Mode =
$$42.5 + \frac{20-12}{2(20)-12-15} \times$$

Merits of Mode

- (i) It can be easily understood and is easy to calculate.
- (ii) It is not affected by extreme values and can be found by inspection is some cases.
- (iii) It can be measured even if open end classes and can be represented graphically.

Demerits of Mode:

- (i) It is ill fined. It is not always possible to find a clearly defined mode.
- (ii) It is not based upon all the observation.
- (iii) It is not capable of further mathematical treatment. it is after indeterminate.
- (iv) It is affected to a greater extent by fluctuations of sampling.

Uses of Mode:

Mode is the average to be used to find the ideal size, e.g., in business forecasting, in manufacture of readymade garments, shoes etc.

Relation between Mode, Median & Mean: Mode = 3 median - 2 mean.