2.2 GRAPH OF POLYNOMIALS

In algebraic or in set theoretic language the graph of a polynomial f(x) is the collection (or set) of all points (x, y), where y = f(x). In geometrical or in graphical language the graph of a polynomial f(x) is a smooth free hand curve passing through points x_1, y_1 , (x_2, y_2) , (x_3, y_3) , etc. where y_1, y_2, y_3 ,.... are the values of the polynomial f(x) at x_1, x_2, x_3 ,.... respectively.

In order to draw the graph of a polynomial f(x), follow the following algorithm.

ALGORITHM:

Step (i) Find the values y_1 , y_2 , y_n of polynomial f(x) on different points x_1 , x_2 , x_n and prepare a table that gives values of y or f(x) for various values of x.

x:	x ₁ x ₂	x_n x_{n+1}	
y = f(x)	$y_1=f(x_1) y_2=f(x_2)$	$Y_n=f(x_n)$	$y_{n+1} = f(x_{n+1}) \qquad \dots$

Step (ii) Plot that points (x_1, y_1) , (x_2, y_2) , (x_3, y_3) ,.... (x_n, y_n) on rectangular co-ordinate system. In plotting these points use different scales on the X and Y axes.

Step (iii) Draw a free hand smooth curve passing through points plotted in **step 2** to get the graph of the polynomial f(x).

(a) Graph of a Linear Polynomial:

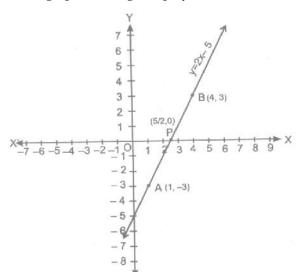
Consider a linear polynomial f(x) = ax + b, $a \ne 0$ Graph of y = ax + b is a straight line. That in why f(x) = ax + b is called a linear polynomial. Since two points determine a straight line, so only two points need to plotted to draw the line y = ax + b. The line represented by y = ax + b crosses the X-axis at exactly one point, namely $\left(-\frac{b}{a}, 0\right)$.

- **Ex.1** Draw the graph of the polynomial f(x) = 2x 5. Also, find the coordinates of the point where it crosses X-axis.
- **Sol.** Let y = 2x 5.

The following table list the values of y corresponding to different values of x.

x	1	4
y	-3	3

The points A (1, - 3) and B (4, 3) are plotted on the graph paper on a suitable scale. A line is drawn passing through these points to obtain the graphs of the given polynomial.



(b) Graph of a Quadratic Polynomial:

Let a,b,c be real numbers and $a \ne 0$. Then $f(x) = ax^2 + bx + c$ is known as a quadratic polynomial in x. Graph of the quadratic polynomial i.e. he curve whose equation is $y = ax^2 + bx + c$, $a \ne 0$ Graph of a quadratic polynomial is always a parabola.

Let
$$y = ax^2 + bx + c$$
, where $a \ne 0$

$$\Rightarrow$$
 4ay = 4a²x² + 4abx + 4ac

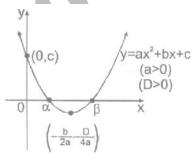
$$\Rightarrow$$
 4ay = 4a²x² + 4abx + b² - b² + 4ac

$$\Rightarrow$$
 4ay = $(2ax + b)^2 - (b^2 - 4ac)$

$$\Rightarrow$$
 4ay + (b² - 4ac) = (2ax + b)² \Rightarrow 4ay + (b² - 4ac) = 4a²(x + b/2a)²

$$\Rightarrow 4a\left\{y + \frac{b^2 - 4ac}{4a}\right\} = 4a^2\left(x + \frac{b}{2a}\right)^2$$

$$\Rightarrow \left(y + \frac{D}{4a}\right) = a\left(a + \frac{b}{2a}\right)^2$$



where $D = b^2 - 4ac$ is the discriminate of the quadratic equation.

REMARKS:

Shifting the origin at $\left(-\frac{b}{2a}, -\frac{D}{4a}\right)$, we have $X = x - \left(-\frac{b}{2a}\right)$ and $Y = y - \frac{(-D)}{4a}$ Substituting these values in (i), we obtain Y = aX2(ii)

which is the standard equation of parabola

Clearly, this is the equation of a parabola having its vertex at $(-\frac{b}{2a}, \frac{D}{4a})$. The parabola opens upwards or downwards according as a > 0 or a < 0.

SIGN OF QUADRTIC EXPRESSIONS:

Let α be a real root of $ax^2 + bx + c = 0$. Then $a\alpha^2 + b\alpha + c = 0$ Point $(\alpha,0)$ lies on $y = ax^2 + bx + c$. Thus, every real root of $ax^2 + bx + c = 0$ represents a point of intersecting of the parabola with the X-axis.

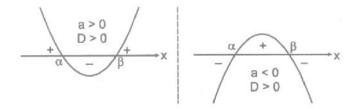
Conversely, if the parabola $y = ax^2 + bx + c$ intersects the X-axis at a point $(\alpha,0)$ then $(\alpha,0)$ satisfies the equation $y = ax^2 + bx + c$

$$\Rightarrow a\alpha^2 + b\alpha + c = 0$$
 [\alpha is a real root of ax² + bx + c = 0]

Thus, the intersection of the parabola $y = ax^2 + bx + c$ with X-axis gives all the real roots of $ax^2 + bx + c = 0$. Following conclusions may be drawn:

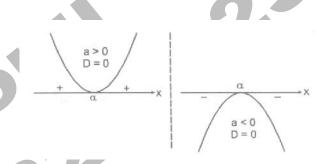
(i) If D>0, the parabola will intersect the x-axis in two distinct points and vice-versa.

The parabola meets x-axis at $\alpha = \frac{-b - \sqrt{D}}{2a}$ and $S = \frac{-b + \sqrt{D}}{2a}$.



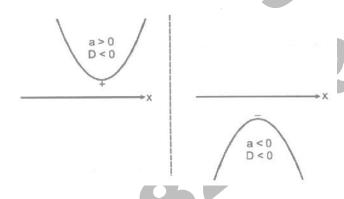
Roots are real & distinct

(ii) If D = 0, the parabola will just touch the x-axis at one point and vice-versa.



Roots are equal

(iii) If D<0, the parabola will not intersect x-axis at all and vice-versa.



Roots are imaginary

REMARKS

$$\forall x \in R, y > 0$$
 only if $a > 0$ & $D = b2 - 4ac < 0$
 $\forall x \in R, y < 0$ only if $a < 0$ & $D = b2 - 4ac < 0$

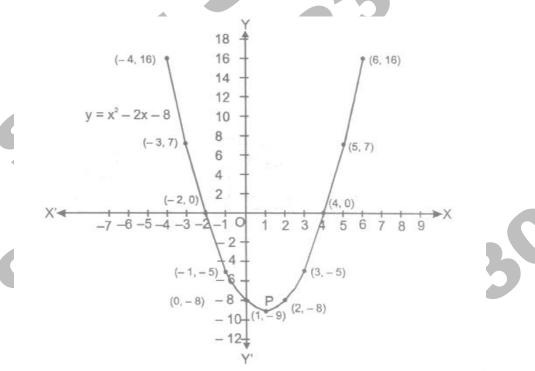
Ex.2 Draw the graph of the polynomial $f(x) = x^2 - 2x - 8$

Sol. Let
$$y = x^2 - 2x - 8$$
.

The following table gives the values of y or f(x) for various values of x.

x	-4	-3	-2	-1	0	1	2	3	4	5	6
$y = x^2 - 2x - 8$	16	7	0	-5	-8	-9	-8	-5	0	7	16

Let us plot the points (-4, 16), (-3, 7), (-2, 0), (-1, -5), (0, -8), (1, -9), (2, -8), (3, -5), (4, 0), (5, 7) and (6, 16) on a graphs paper and draw a smooth free hand curve passing through these points. The curve thus obtained represents the graphs of the polynomial $f(x) = x^2 - 2x - 8$. This is called a parabola. The lowest point P, called a minimum points, is the vertex of the parabola. Vertical line passing through P is called the axis of the parabola. Parabola is symmetric about the axis. So, it is also called the line of symmetry.



Observations:

Fro the graphs of the polynomial $f(x) = x^2 - 2x - 8$, following observations can be drawn:

- (i) The coefficient of x^2 in $f(x) = x^2 2x 8$ is 1 (a positive real number) and so the parabola opens upwards.
- (ii) $D = b^2 4ac = 4 + 32 = 36 > 0$. So, the parabola cuts X-axis at two distinct points.
- (iii) On comparing the polynomial x^2 2x 8 with ax^2 + bx + c, we get a = 1, b = -2 and c = -8.

The vertex of the parabola has coordinates (1, -9) i.e. $\left(\frac{-b}{2a}, \frac{-D}{4a}\right)$, where $D \equiv b^2$ - 4ac.

(iv) The polynomial $f(x) = x^2 - 2x - 8 = (x - 4)(x + 2)$ is factorizable into two distinct linear factors (x - 4) and (x + 2). So, the parabola cuts X-axis at two distinct points (4, 0) and (-2, 0). the x-coordinates of these points are zeros of f(x).

Ex.3 Draw the graphs of the quadratic polynomial $f(x) = 3 - 2x - x^2$.

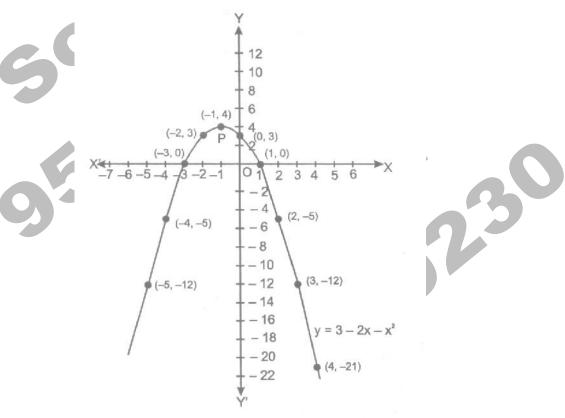
Sol. Let
$$y = f(x)$$
 or, $y = 3 - 2x - x^2$.

Let us list a few values of $y = 3 - 2x - x^2$ corresponding to a few values of x as follows:

X	-5	-4	-3	-2	-1	0	1	2	3	4
$y = 3 - 2x - x^2$	-12	-5	0	3	4	3	0	- 5	-12	-21

Thus, the following points lie on the graph of the polynomial $y = 2 - 2x - x^2$: (-5, -12), (-4, -5), (-3, 0), (-2, 4), (-1, 4), (0, 3), (1, 0), (2, -5), (3, -12) and (4, -21).

Let plot these points on a graph paper and draw a smooth free hand curve passing through these points to obtain the graphs of $y = 3 - 2x - x^2$. The curve thus obtained represents a parabola, as shown in figure. The highest point P(-1, 4), is called a maximum points, is the vertex of the parabola. Vertical line through P is the axis of the parabola. Clearly, parabola is symmetric about the axis.



Observations:

Following observations from the graph of the polynomial $f(x) = 3 - 2x - x^2$ is as follows:

- (i) The coefficient of x^2 in $f(x) = 3 2x x^2$ is 1 i.e. a negative real number and so the parabola opens downwards.
- (ii) $D = b^2 4ax = 4 + 12 = 16 > 0$. So, the parabola cuts x-axis two distinct points.

(iii) On comparing the polynomial $3 - 2x - x^2$ with $ax^2 + bc + c$, we have a = -1, b = -2 and c = 3. The vertex of the parabola is at the point (-1, 4) i.e. at $\left(\frac{-b}{2a}, \frac{-D}{4a}\right)$, where $D = b^2 - 4ac$.

(iv) The polynomial $f(x) = 3 - 2x - x^2 = (1 - x)(x + 3)$ is factorizable into two distinct linear factors (1 - x) and (x + 3). So, the parabola cuts X-axis at two distinct points (1, 0) and (-3, 0). The co-ordinates of these points are zeros of f(x).

(c) GRAPH OF A CUBIC POLYNOMIAL:

Graph of a cubic polynomial does not have a fixed standard shape. Cubic polynomial graphs will always cross X-axis at least once and at most thrice.

Ex.4 Draw the graphs of the polynomial $f(x) = x^3 - 4x$.

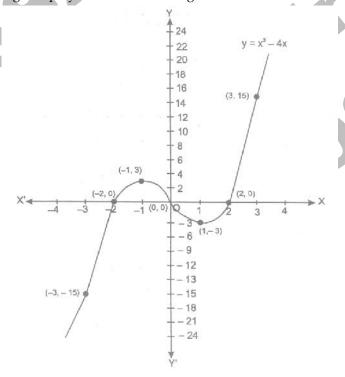
Sol. Let
$$y = f(x)$$
 or, $y = x^2 - 4x$.

The values of y for variable value of x are listed in the following table:

x	-3	-2	-1	0	1	2	3
$y = x^3 - 4x$	-15	0	3	0	-3	0	15

Thus, the curve $y = x^3 - 4x$ passes through the points (-3, -15), (-2, 0), (-1, 3), (0, 0), (1, -3), (2, 0), (3, 15), (4, 48) etc.

Plotting these points on a graph paper and drawing a free hand smooth curve through these points, we obtain the graph of the given polynomial as shown figure.



Observations:

For the graphs of the polynomial $f(x) = x^3 - 4x$, following observations are as follows:

- (i) The polynomial $f(x) = x^3 4x = x(x^2 4) = x(x 2)$ (x + 2) is factorizable into three distinct linear factors. The curve y = f(x) also cuts X-axis at three distinct points.
- (ii) We have, f(x) = x(x-2)(x+2)

Therefore 0, 2 and -2 are three zeros of f(x). The curve y = f(x) cuts X-axis at three points O (0, 0), P(2, 0) and Q (-2, 0).

