2.5 FINDING REMAINNING ZEROES OF A POLYNOMIAL IF SOME ARE GIVEN

VALUE OF A POLYNOMIAL:

The value of a polynomial f(x) at $x = \alpha$ is obtained by substituting $x = \alpha$ in the given polynomial and is denoted by $f(\alpha)$.

For example: If $f(x) = 2x^3 - 13x^2 + 17x + 12$ then its value at x = 1 is

$$f(1) = 2(1)^3 - 13(1)^2 + 17(1) + 12 = 2 - 13 + 17 + 12 = 18.$$

ZEROS OR ROOTS OF A POLYNOMIAL:

A real number 'a' is a zero of a polynomial f(x), if f(a) = 0, Here 'a' is called a root of the equation f(x) = 0.

Ex.10 Show that x = 2 is a root of $2x^3 + x^2 - 7x - 6$

Sol.
$$p(x) = 2x^3 + x^2 - 7x - 6$$
.

Then,
$$p(2) = 2(2)^3 + (2)^2 - 7(2) - 6 = 16 + 4 - 14 = 0$$

Hence x = 2 is a root of p(x).

Ex.11 If $x = \frac{4}{3}$ is a root of the polynomial $f(x) = 6x^3 - 11x^2 + kx - 20$ then find the value of k.

Sol.
$$f(x) = 6x^3 - 11x^2 + kx - 20$$

$$f\left(\frac{4}{3}\right) = 6\left(\frac{4}{3}\right)^3 - 11\left(\frac{4}{3}\right)^2 + k\left(\frac{4}{3}\right) - 20 = 0$$

$$\Rightarrow 6\left(\frac{64}{27}\right) - 11\left(\frac{16}{9}\right) + \frac{4k}{3} - 20 = 0 \Rightarrow 6\left(\frac{64}{27}\right) - 11\left(\frac{16}{9}\right) + \frac{4k}{3} - 20 = 0$$

$$\Rightarrow$$
 128 - 176 + 12k - 180 = 0

$$\Rightarrow$$
 12k + 128 - 356 = 0

$$\Rightarrow$$
 12k = 228

$$\Rightarrow$$
 k = 19.

Ex.12 If x = 2 & x = 0 are roots of the polynomials $(f)x = 2x^3 - 5x^2 + ax + b$, then find the values of a and b/

Sol.
$$f(2) = 2(2)^3 - 5(2)^2 + a(2) + b = 0$$

$$\Rightarrow 16 - 20 + 2a + b = 0 \Rightarrow 2a + b = 4 \dots$$

$$\Rightarrow$$
 f(0) = 2(0)³ - 5(0)² + a(0) + b = 0 \Rightarrow b = 0

$$\Rightarrow$$
 2a = 4 \Rightarrow a = 2, b = 0.

FACTOR THEOREM:

Let p(x) be a polynomial of degree greater than or equal to 1 and 'a' be a real number such that p(a) = 0. Then (x - a) is a factor of p(x). Conversely, if (x - a) is a factor of p(x), then p(a) = 0. **Ex.13** Show that x + 1 and 2x - 3 are factors of $2x^3 - 9x^2 + x + 12$.

Sol. To prove that (x + 1) and (2x - 3) are factors of $p(x) = 2x^3 - 9x^2 + x + 12$ it is sufficient to show that p(-1) and $p\left(\frac{3}{2}\right)$ both are equal to zero.

$$p(-1) = 2(-1)^3 - 9(-1)^2 + (-1) + 12 = -2 - 9 - 1 + 12 = -12 + 12 = 0$$

And
$$p\left(\frac{3}{2}\right) = 2\left(\frac{3}{2}\right)^3 - 9\left(\frac{3}{2}\right)^2 + \left(\frac{3}{2}\right) + 12$$

$$= \frac{27}{4} - \frac{81}{4} + \frac{3}{2} + 12 = \frac{27 - 81 + 6 + 48}{4} = \frac{-81 + 81}{4} = 0$$

- **Ex.14** Find α and β if x + 1 and x + 2 are factors of $p(x) = x^3 + 3x^2 2\alpha x + \beta$
- **Sol.** x + 1 and x + 2 are the factor of p(x).

Then, p(-1) = 0 & p(-2) = 0

Therefore, $p(-1) = (-1)^3 + 3(-1)^2 - 2\alpha(-1) + \beta = 0$

$$\Rightarrow$$
 $-1+3+2\alpha+\beta=0 \Rightarrow \beta=-2\alpha-2$

$$p(-2) = (-2)^3 + 3(-2)^2 - 2\alpha(-2) + \beta = 0$$

$$\Rightarrow$$
 -8 + 12 + $4\alpha + \beta = 0 \Rightarrow \beta = -4\alpha - 4$ (ii)

From equation (1) and (2)

$$-2\alpha - 2 = -4\alpha - 4$$

$$\Rightarrow$$
 $2\alpha = -2 \Rightarrow \alpha = -1$

Put
$$\alpha = -1$$
 equation (1) $\Rightarrow \beta = -2$ (-1) $-2 = 2 - 2 = 0$.

Hence $\alpha = -1, \beta = 0$

- **Ex.15** What must be added to $3x^3 + x^2 22x + 9$ so that the result is exactly divisible by $3x^2 + 7x 6$.
- **Sol.** Let $p(x) = 3x^3 + x^2 22x + 9$ and $q(x) = 3x^2 + 7x 6$

We know if p(x) is divided by q(x) which is quadratic polynomial then the remainder be r(x) and degree of r(x) is less than q(x) or Divisor.

:. By long division method

Let we added ax + b (linear polynomial) in p(x), so that p(x) + ax + b is exactly divisible by $3x^2 + 7x - 6$.

Hence, $p(x) + ax + b = s(x) = 3x^3 - x^2 - 22x + 9 + ax + b = 3x^3 + x^2 x(22 - a) + (9 + b)$.

$$\begin{array}{r}
x-2 \\
3x^2 + 7x - 6 \overline{\smash)3x^3 + x^2 - x(22 - a) + 9 + b} \\
\underline{-3x^3 \pm 7x^2 + -6x} \\
-6x^2 + 6x - (22 - a)x + 9 + b} \\
-6x^2x(-16 + a) + 9 + b \\
\underline{-6x^2 + -14x \pm 12} \\
x(-2 + a) + (b - 3) = 0
\end{array}$$

Hence, x(a-2) + b - 3 = 0. x + 0

$$\Rightarrow$$
 a - 2 = 0 & b - 3 = 0

$$\Rightarrow$$
 a = 2 and b = 3

Hence if in p(x) we added 2x + 3 then it is exactly divisible by $3x^2 + 7x - 6$.

Ex.16 What must be subtracted from $x^3 - 6x^2 - 15x + 80$ so that the result is exactly divisible by $x^2 + x - 12$.

Sol. Let ax + b be subtracted from
$$p(x) = x^3 - 6x^2 - 15x + 80$$
 so that it is exactly divisible by $x^2 + x - 12$.

$$\therefore$$
 s(x) = x³ - 6x² - 15x + 80 - (ax + b)

$$= x^3 - 6x^2 - (15 + a)x + (80 - b)$$

Dividend = Divisor × quotient + remainder

But remainder will be zero.

$$\Rightarrow$$
 s(x) = (x² + x - 12) × quotient

$$\Rightarrow$$
 s(x) = $x^3 - 6x^2 - (15 + a)x + (80 - b)$

$$\begin{array}{r}
 x - 7 \\
 x^{2} + x - 12 \overline{\smash)x^{3} - 6x^{2} - x(15 + a) + 80 - b} \\
 & \frac{\underline{-x^{3} \pm x^{2} \mp 12x}}{-7x^{2} + 12x - (15 + a)x + 80 - b} \\
 & -7x^{2} + (-3 - a) + 80 - b \\
 & \frac{\underline{+}7x^{2} \mp 7x}{x(4 - a) + (-4 - b) = 0}
 \end{array}$$

Hence,
$$x(4 - a) + (-4 - b) = 0.x + 0$$

$$\Rightarrow$$
 4 - a = 0 & (-4 - b) = 0

$$\Rightarrow$$
 a = 4 and b = -4

Hence, if in p(x) we subtract 4x - 4 then it is exactly divisible by $x^2 + x - 12$.

Ex.17 Using factor theorem, factorize :
$$p(x) = 2x^4 - 7x^3 - 13x^2 + 63x - 45$$
.

Sol.
$$45 \Rightarrow \pm 1, \pm 3, \pm 5, \pm 9, \pm 15, \pm 45$$

If we put
$$x = 1$$
 in $p(x)$

$$p(1) = 2(1)^4 - 7(1)^3 - 13(1)^2 + 63(1) - 45$$

$$p(1) = 2 - 7 - 13 + 63 - 45 = 65 - 65 = 0$$

$$\therefore$$
 x = 1 or x - 1 is a factor of p(x).

Similarly if we put x = 3 in p(x)

$$p(3) = 2(3)^4 - 7(3)^3 - 13(3)^2 + 63(3) - 45$$

$$p(3) = 162 - 189 - 117 + 189 - 45 = 162 - 162 = 0$$

Hence,
$$x = 3$$
 or $(x - 3) = 0$ is the factor of $p(x)$.

$$p(x) = 2x^4 - 7x^3 - 13x^2 + 63x - 45$$

$$p(x) = 2x^3 (x-1) - 5x^2 (x-1) - 18x(x-1) + 45(x-1)$$

$$\Rightarrow$$
 p(x) = (x - 1) (2x³ - 5x² - 18x + 45)

$$\Rightarrow$$
 p(x) = (x - 1) (2x³ - 5x² - 18x + 45)

$$\Rightarrow$$
 p(x) = (x - 1) [2x² -(x - 3) + x(x - 3) - 15(x - 3)]

$$\Rightarrow$$
 p(x) = (x - 1) (x - 3) (2x² + x - 15)

$$\Rightarrow$$
 p(x) = (x - 1) (x - 3) (2x² + 6x - 5x - 15)

$$\Rightarrow$$
 p(x) = (x - 1) (x - 3)[2x(x + 3) - 5(x + 3)]

$$\Rightarrow$$
 p(x) = (x - 1) (x - 3) (x + 3) (2x - 5).

REMAINDER THEOREM:

Let p(x) be any polynomial of degree greater than or equal to one and 'a' be any real number. If p(x) is divided by x - a, then the remainder is equal to p(a).

Let q(x) be the quotient and r(X) be the remainder when p(x) is divided by (x - a), then

Dividend = Divisor × Quotient + Remainder

Ex.18 Find the remainder when $f(x) = x^3 - 6x^2 + 2x - 4$ is divided by g(x) = 1 - 2x.

Sol.
$$1 - 2x = 0 \Rightarrow 2x = 1 \Rightarrow x = \frac{1}{2}$$

$$f\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^3 - 6\left(\frac{1}{2}\right)^2 + 2\left(\frac{1}{2}\right) - 4 = \frac{1}{8} - \frac{3}{2} + 1 - 4 = \frac{1 - 12 + 8 - 32}{8} = -\frac{35}{8}$$

Ex.19 Apply division algorithm to find the quotient q(x) and remainder r(x) on dividing $f(x) = 10x^4 + 17x^3 - 62x^2 + 30x - 3$ by $b(x) = 2x^2 - x + 1$.

Sol.
$$2x^2 - x + 1 \overline{\smash)10x^4 + 17x^3 - 62x^2 + 30x - 3}$$
$$-10x^4 + 5x^3 \pm 5x^2$$

$$\frac{_{-10x^{4}_{+} - 5x^{3}_{\pm}5x^{2}}}{22x^{3}_{-67x^{2}_{+} + 30x - 3}} \\
\underline{_{-22x^{3}_{+} - 11x^{2}_{\pm}11x}}^{_{-26x^{2}_{+} + 19x - 3}} \\
\underline{_{+-56x^{2}_{\pm}28x_{+} - 28}}^{_{-25}}$$

So, quotient $q(x) = 5x^2 + 11 x - 28$ and remainder r(x) = -9x + 25.

Now, dividend = Quotient × Divisor + Remainder

$$= (5x^2 + 11x - 28)(2x^2 - x + 1) + (-9x + 25)$$

$$= 10x^4 - 5x^3 + 5x^2 + 22x^3 - 11x^2 + 11x - 56x^2 + 28x - 28 - 9x + 25$$

$$= 10x^4 + 17x^3 - 62x^2 + 30x - 3$$

Hence, the division algorithm is verified.

Ex.20 Find all the zeros of the polynomial $f(x) = 2x^4 - 2x^3 - 7x^2 + 3x + 6$, if two of its zeros are $-\sqrt{\frac{3}{2}}$ and $\sqrt{\frac{3}{2}}$.

Sol. Since
$$-\sqrt{\frac{3}{2}}$$
 and $\sqrt{\frac{3}{2}}$ are zeros of $f(x)$.

Therefore,
$$\left(x + \sqrt{\frac{3}{2}}\right) \left(x - \sqrt{\frac{3}{2}}\right) = \left(x^2 - \frac{3}{2}\right) = \frac{2x^2 - 3}{2}$$
 or $2x^2 - 3$ is a factor of $f(x)$.

$$\begin{array}{r} x^2 - x - 2 \\ 2x^2 - 3 \overline{\smash)2x^4 - 2x^3 - 7x^2 + 3x + 6} \\ \underline{-2x^4 \quad _{\mp} 3x^2} \\ \overline{-2x^3 - 4x^2 + 3x + 6} \\ \underline{\pm 2x^3 \quad _{\mp} 3x} \\ -4x^2 + 6 \\ \underline{-4x^2 + 6} \\ \underline{+ \quad -} \\ 0 \end{array}$$

$$\therefore 2x^{4} - 2x^{3} - 7x^{2} + 3x + 6 = (2x^{2} - 3)(x^{2} - x - 2)$$

$$= (2x^{2} - 3)(x - 2)(x + 1)$$

$$= 2\left(x + \sqrt{\frac{3}{2}}\right)\left(x - \sqrt{\frac{3}{2}}\right)(x - 2)(x + 1)$$

So, the zeros are $-\sqrt{\frac{3}{2}}, \sqrt{\frac{3}{2}}, 2, -1$

