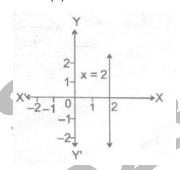
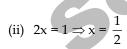
# 3.4 GRAPHICAL SOLUTION OF LINEAR EQUATIONS IN TWO VARIABLES

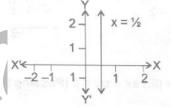
### Graphs of the type (i) ax = b

**Ex.1** Sol.

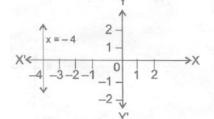
Draw the graph of following : (i) x = 2,


(ii) 
$$2x = 1$$

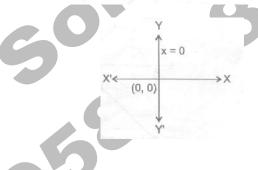

(iii) 
$$x + 4 = 0$$


(iv) 
$$x = 0$$

(i) 
$$x = 2$$



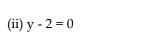










(iv) 
$$x = 0$$



### Graphs of the type (ii) ay = b.

Ex.2 Draw the graph of following: (i) y = 0, (ii) y - 2 = 0, (iii) 2y + 4 = 0



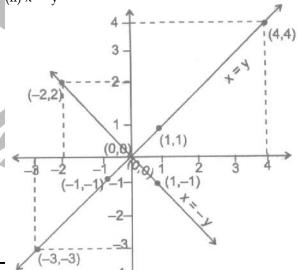




2 -

## Graphs of the type (iii) ax + by = 0 (Passing through origin)

- Ex.3 Draw the graph of following: (i) x = y (ii) x = -y
- x
   1
   4
   -3
   0


   y
   1
   4
   -3
   0

(i) x - y

Sol.

| (**) |            |     |  |
|------|------------|-----|--|
| (11) | $\chi = 0$ | - V |  |
| ()   |            | J   |  |

| x | 1  | -2 | 0 |
|---|----|----|---|
| v | -1 | 2  | 0 |



### Graphs of the Type (iv) ax + by + c = 0. (Making Interception x - axis, y-axis)

**Ex.4** Solve the following system of linear equations graphically: x - y = 1, 2x + y = 8. Shade the area bounded by these two lines and y-axis. Also, determine this area.

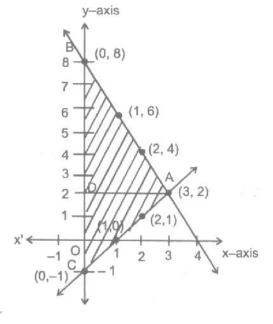
Sol.

(i) 
$$x - y = 1$$
  
 $x - y + 1$ 

| x | 0  | 1 | 2 |
|---|----|---|---|
| y | -1 | 0 | 1 |

(ii) 
$$2x + y = 8$$

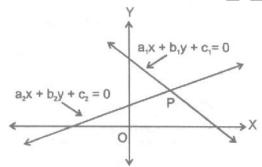
(ii) 
$$2x + y = 8$$
  
 $y = 8 - 2x$ 


| χ |   | 0 | 1 | 2 |
|---|---|---|---|---|
| Υ | , | 8 | 6 | 4 |

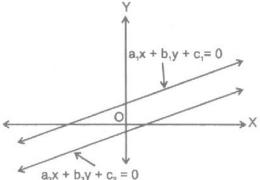
Solution is x = 3 and y = 2

Area of is x = 3 and y = 2

Area of 
$$\triangle ABC = \frac{1}{2} \times BC \times AD$$

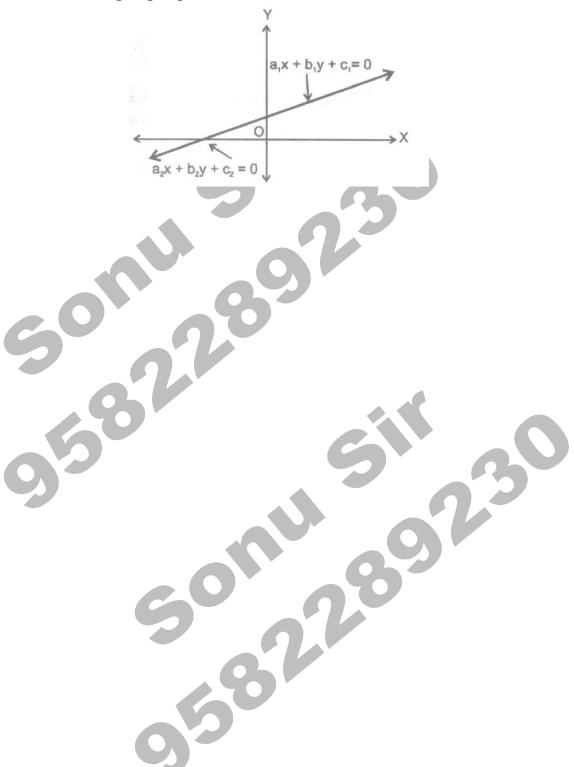

$$=\frac{1}{2} \times 9 \times 3 = 13.5 \text{ Sq. unit.}$$




#### **NATURE OF GRAPHICAL SOLUTION:**

Let equations of two lines are  $a_1x + b_1y + c_1 = 0$  and  $a_2x + b_2y + c_2 = 0$ .

(i) Lines are consistent (unique solution) i.e. they meet at one point condition is  $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ 




(ii) Lines are inconsistent (no solution) i.e. they do not meet at one point condition is  $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ 



(iii) Lines are coincident (infinite solution) i.e. overlapping lines (or they are on one another) condition is

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

