4.3 NATURE OF ROOTS

Consider the quadratic equation, $ax^2 + bx + c = 0$ having $\alpha\beta$ as its roots and b^2 - 4ac is called discriminate of roots of quadratic equation. It is denoted by D or Δ .

Roots of the given quadratic equation may be

- (i) Real and unequal
- (ii) Real and equal
- (iii) Imaginary and unequal.

Let the roots of the quadratic equation $ax^2 + bx + c = 0$ (where $a \ne 0, b, c \in \mathbb{R}$) be α and β then

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \qquad \dots$$

and
$$\beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \qquad(ii)$$

The nature of roots depends upon the value of expression 'b² - 4ac' with in the square root sign. This is known as discriminate of the given quadratic equation.

Consider the Following Cases:

Case-1 When $b^2 - 4ac > 0$, (D > 0)

In this case roots of the given equation are real and distinct and are as follows

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \text{ and } \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

(i) When $a(\neq 0)$, b, $c \in Q$ and b^2 - 4ac is a perfect square

In this case both the roots are rational and distinct.

(ii) When $a(\neq 0)$, $b, c \in Q$ and b^2 - 4ac is not a perfect square

In this case both the roots are irrational and distinct.

[See remarks also]

Case-2 When
$$b^2 - 4ac = 0$$
, (D = 0)

In this case both the roots are real and equal to

Case-3 When $b^2 - 4ac < 0$, (D < 0)

In this case $b^2 - 4ac < 0$, then $4ac - b^2 > 0$

$$\therefore \qquad \alpha = \frac{-b + \sqrt{-(4ac - b^2)}}{2a} \text{ and } \beta = \frac{-b - \sqrt{(4ac - b^2)}}{2a}$$

or
$$\alpha = \frac{-b + i\sqrt{4ac - b^2}}{2a} \text{ and } \beta = \frac{-b - i\sqrt{4ac - b^2}}{2a}$$

$$\left[\because \sqrt{-1} = i \right]$$

i.e. in this case both the root are imaginary and distinct.

REMARKS:

- If $\mathbf{a},\mathbf{b},\mathbf{c}\in\mathbf{Q}$ and \mathbf{b}^2 $\mathbf{4ac}$ is positive ($\mathbf{D}>0$) but not a perfect square, then the roots are irrational and they always occur in conjugate pairs like $2+\sqrt{3}$ and $2-\sqrt{3}$. However, if $\mathbf{a},\mathbf{b},\mathbf{c}$ are irrational number and \mathbf{b}^2 $\mathbf{4ac}$ is positive but not a perfect square, then the roots may not occur in conjugate pairs.
- If b^2 4ac is negative (D > 0), then the roots are complex conjugate of each other. In fact, complex roots of an equation with real coefficients always occur in conjugate pairs like 2 + 3i and 2 3i. However, this may not be true in case of equations with complex coefficients. For example, x^2 2ix 1 = 0 has both roots equal to i.
- ★ If **a** and **c** are of the same sign and b has a sign opposite to that of a as well as c, then both the roots are positive, the sum as well as the product of roots is positive $(D \ge 0)$.
- ***** If **a,b,** are of the same sign then both the roots are negative, the sum of the roots is negative but the product of roots is positive $(D \ge 0)$.

