Chapter 6

ASSIGNMENT

OBJECTIVE EXCERCISE - 6.1

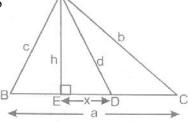
- 1. The perimeters of two similar triangles are 25 cm and 15 cm respectively. If one side of first triangle is 9 cm, then the corresponding side of the other triangle is
 - (A) 6.2 cm

- (B) 3.4 cm
- (C) 5.4 cm
- (D) 8.4 cm
- 2. In the following figure, $AE \perp BC$, D is the mid point of BC, hen x is equal to
 - (A) $\frac{1}{a} \left[b^2 d^2 \frac{a^2}{4} \right]$

(B) $\frac{h+d}{3}$

(C) $\frac{c+d-h}{2}$

(D) $\frac{a^2 + b^2 + d^2 - c^2}{4}$



- 3. Two triangles ABC and PQR are similar, if BC : CA : AB = 1 : 2 : 3, then $\frac{QR}{PR}$ is
 - (A) $\frac{2}{3}$

- (B) $\frac{1}{2}$
- (C) $\frac{1}{\sqrt{2}}$
- (D) $\frac{2}{3}$
- 4. In a triangle ABC, if angle $B = 90^{\circ}$ and D is the point in BC such that BD = 2 DC, then

(A)
$$AC^2 = AD^2 + 3 CD^2$$
 (B) $AC^2 = AD^2 + 5 CD^2$ (C) $AC^2 = AD^2 + 7 CD^2$ (D) $AC^2 = AB^2 + 5 BD^2$

5. P and Q are the mid points of the sides AB and BC respectively of the triangle ABC, right-angled at B, then

$$(A) AQ^2 + CP^2 = AC^2$$

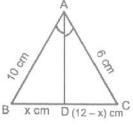
(B)
$$AQ^2 + CP^2 = \frac{4}{5}AC^2$$

(C)
$$AQ^2 + CP^2 = \frac{5}{4}AC^2$$

(D)
$$AQ^2 + CP^2 = \frac{3}{5}AC^3$$

6. In a \triangle ABC, AD is the bisector of \angle A, meeting side BC at D. If AB = 10 cm, AC = 6 cm, BC = 12 cm, find BD.

(D) 1.33



- 7. In a triangle ABC, a straight line parallel to BC intersects AB and AC at point D and E respectively. If the area of ADE is one-fifth of the area of ABC and BC = 10 cm, then DE equals
 - (A) 2 cm

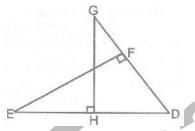
- (B) $2\sqrt{5}$ cm
- (C) 4 cm
- (D) $4\sqrt{5}$ cm

- 8. ABC is a right-angle triangle, right angled at A . A circle is inscribed in it. The lengths of the two sides containing the right angle are 6 cm and 8 cm, then radius of the circle is
 - (A) 3 cm

- (B) 2 cm
- (C) 4 cm
- (D) 8 cm

SUBJECTIVE EXCERCISE - 6.2

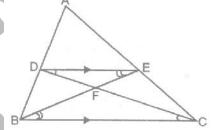
1. Given $\angle GHE = \angle DFE = 90^{\circ}$, DH = 8, DF = 12, DG = 3x - 1 and DE = 4x + 2.



Find the lengths of segments DG and DE.

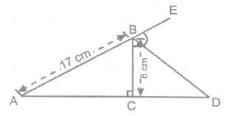
- 2. In the given **figure**, DE is parallel to the base BC of triangle ABC and AD: DB = 5: 3. Find the ratio:
 - (i) $\frac{AD}{AB}$

Area of \triangle DEF Area of \triangle CFB

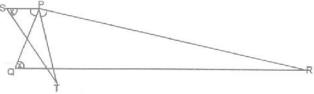


[CBSE - 2000]

3. In **Figure**, \triangle ABC is a right-angled triangle, where \angle ACB = 90⁰. The external bisector BD of \angle ABC meets AC produced at D. If AB = 17 cm and BC = 8 cm, find the AC and BD.

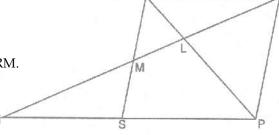


In **figure**, \angle QPS = \angle RPT and \angle PST = \angle PQR. Prove that \triangle PST \sim \triangle PQR and hence find the ratio ST : PT, if PR : R = 4 : 5.

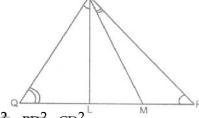


5. In the **figure,** PQRS is a parallelogram with PQ = 16 cm and QR = 10 cm. L is a point on PR such that RL : LP = 2 : 3. QL produced meets RS at M and PS produced at N.

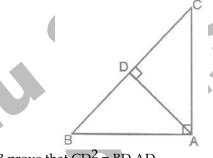
Find the lengths of PN and RM.



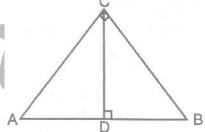
- 6. In \triangle ABC, D and E are points on AB and AC respectively such that DE | BC. If AD = 2.4 cm, AE = 3.2 cm, DE = 2 cm and BC = 5 cm, find BD and CE.
- 7. In a triangle PQR, L an DM are two points on the base QR, such that Δ :PQ = \angle QRP and \angle RPM = \angle RQP. Prove that :
 - (i) $\Delta PQL \sim \Delta RPM$
 - (ii) $QL \times RM = PL \times PM$
 - (iii) $PQ^2 = QR \times QL$



8. In figure, $\angle BAC = 90^{\circ}$, AD \perp BC. prove that $AB^2 = BD^2 - CD^2$.



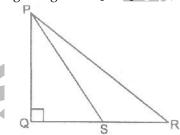
9. In figure, $\angle ACB = 90^{\circ}$, CD \perp AB prove that CD² = BD.AD.



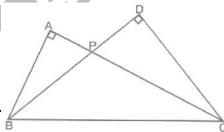
10. In a right triangle, prove that the square on the hypotenuse is equal to sum of the squares on the other two sides.

Using the above result, prove the following:

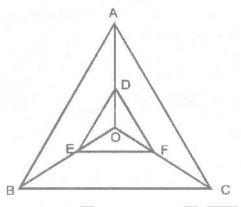
In **figure** PQR is a right triangle, right angled at Q. If QS = SR, show that $PR^2 = 4PS^2 - 3PQ^2$.



- 11. In \triangle ABC, \angle ABC = 135⁰. Prove that AC² = AB² + BC² + 4ar (\triangle ABC).
- 12. In figure, ABC and DBC are two right triangles with the common hypotenuse BC and with their sides AC and DB intersecting at P. Prove that $AP \times PC = DP \times PB$.

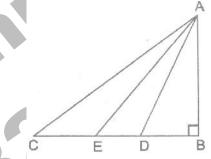


Any point O, inside $\triangle ABC$, in joined to its vertices. From a point D on AO, DE is drawn so that DE | | AB and EF | | BC as shown in figure. Prove that DF | | AC. [CBSE-2002]



14. In figure, D and E trisect BC. Prove that $8AE^2 = 3AC^2 + 5AD^2$

[CBSE - 2006]



- 15. The perpendicular AD on the base BC of a \triangle ABC meets BC at D so that 2DB = 3CD. Prove that $5AB^2 = 5AC^2 + BC^2$. [CBSE 2007]
- **16.** Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares on their corresponding sides.

Using the above, do the following:

The diagonals of a trapezium ABCD, with AB $\mid \mid$ DC, intersect each other point O. If AB = 2 CD, find the ratio of the area of \triangle AOB to the area of \triangle COD [CBSE - 2008]

17. D, E and F are the mid-points of the sides AB, BC and CA respectively of \triangle ABC. Find $\frac{ar(\triangle DEF)}{ar(\triangle ABC)}$

[CBSE - 2008]

- 18. D and E are points on the sides CA and CB respectively of \triangle ABC right-angled at C. Prove that AE² + BD² = AB² + DE².
- 19. In figure, DB \perp BC, DE \perp AB and AC \perp BC. Prove that $\frac{BE}{DE} = \frac{AC}{BC}$ [CBSE 2008]

