6.2 THALES THEOREM

(BASIC PROPROTIONALITY THEOREM)

Statement: If a line is drawn parallel to one side of a triangle to intersect the other sides in distinct points, then

the other two sides are divided in the same ratio.

Given: A triangle ABC in which a line parallel to side

BC intersects other two sides AB and AC at D and

E respectively.

To Prove: $\frac{AD}{DB} = \frac{AE}{EC}$

Construction : Join BE and CD and draw DM \perp AC and EN \perp AB.

Proof: Area of $\triangle ADE$ (= $\frac{1}{2}$ base × height) = $\frac{1}{2}$ AD × EN.

Area of ΔADE is denoted as are (ADE)

So,
$$ar(ADE) = \frac{1}{2}DB \times EN$$

And
$$ar(BDE) = \frac{1}{2} DB \times EN$$
,

Therefore,
$$\frac{\text{ar(ADE)}}{\text{ar(BDE)}} = \frac{\frac{1}{2}\text{AD} \times \text{EN}}{\frac{1}{2}\text{DB} \times \text{EN}} = \frac{\text{AD}}{\text{DB}} \qquad \dots (i)$$

Similarly, $\operatorname{ar}(ADE = \frac{1}{2} AE \times DM \text{ and } \operatorname{ar}(DEC = \frac{1}{2} EC \times DM.$

And $\frac{\operatorname{ar}(ADE)}{\operatorname{ar}(DEC)} = \frac{\frac{1}{2}AE \times DM}{\frac{1}{2}EC \times DM} = \frac{AE}{EC} \qquad(ii)$

Note that \triangle BDE and \triangle DEC are on the same base DE and between the two parallel lines BC and DE.

o,
$$ar(BDE) = ar(DEC)$$
(iii)

Therefore, from (i), (ii) and (iii), we have:

$$\frac{AD}{DB} = \frac{AE}{EC}$$

Hence Proved.

Corollary:

If in a $\triangle ABC$, a line DE $|\ |\ BC$, intersects AB in D and AC in E, then

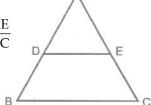
(i)
$$\frac{DB}{AD} = \frac{EC}{AE}$$

(ii)
$$\frac{AB}{AD} = \frac{AC}{AE}$$

(ii)
$$\frac{AD}{AB} = \frac{AE}{AC}$$

(iv)
$$\frac{AB}{DB} = \frac{AC}{EC}$$

(v)
$$\frac{DB}{AB} = \frac{EC}{AC}$$



Converse of Basic Proportionality Theorem:

If a line divides any two sides of a triangle in the same ratio, then the line must be parallel to the third side.

Some Important Results and Theorems:

- (i) The internal bisector of an angle of a triangle divides the opposite side internally in the ratio of the sides containing the angle.
- (ii) In a triangle ABC, if D is a point on BC such that D divides BC in the ratio AB : AC, then AD is the bisector of $\hat{e}A$.
- (iii) The external bisector of an angle of a triangle divides the opposite sides externally in the ratio of the sides containing the angle.
- (iv) The line drawn from the mid-point of one side of a triangle parallel to another side bisects the third side.
- (v) The line joining the mid-points of two sides of a triangle is parallel to the third side.
- (vi) The diagonals of a trapezium divide each other proportionally.
- (vii) If the diagonals of a quadrilateral divide each other proportionally, then it is a trapezium.
- (viii) Any line parallel to the parallel sides of a trapezium divides the non-parallel sides proportionally.
- (ix) If three or more parallel lines are intersected by two transversal, then the intercepts made by them on the transversal are proportional.

ILLUSTRATIONS:

Ex.1 In a \triangle ABC, D and \overline{E} are points on the sides AB and AC respectively such that DE | | BC. If AD = 4x - 3, AE = 8x - 7, BD = 3x - 1 and CE = 5x - 3, find the value of x.

[CBSE - 2006]

Sol. In $\triangle ABC$, we have

$$\therefore \frac{AD}{DB} = \frac{AE}{EC}$$
 [By B

[By Basic Proportionality Theorem]

$$\Rightarrow \frac{4x-3}{3x-1} = \frac{8x-7}{5x-3}$$

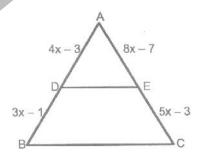
$$\Rightarrow 20x^2 - 15x - 12x + 9 = 24x^2 - 21x - 8x + 7$$

$$\Rightarrow 20x^2 - 27x + 9 = 24x^2 - 29x + 7$$

$$\Rightarrow 4x^2 - 2x - 2 = 0$$

$$\Rightarrow 2x^2 - x - 1 = 0$$

$$\Rightarrow (2x+1)(x-1)=0$$



$$\Rightarrow$$
 $x = 1 \text{ or } x = -\frac{1}{2}$

So, the required value of x is 1.

[x = $-\frac{1}{2}$ is neglected as length can not be negative].

- Ex.2 D and E are respectively the points on the sides AB and AC of a \triangle ABC such that AB = 12 cm, AD = 8 cm, AE = 12 cm and AC = 18 cm, show that DE | | BC.
- **Sol.** We have,

$$AB = 12 \text{ cm}$$
, $AC = 18 \text{ m}$, $AD = 8 \text{ cm}$ and $AE = 12 \text{ cm}$.

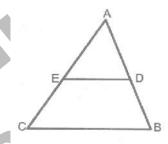
$$\therefore$$
 BD = AB - AD = (12 - 8) cm = 4 cm

$$CE = AC - AE = (18 \ 12) \ cm = 6 \ cm$$

Now,
$$\frac{AD}{BC} = \frac{8}{4} = \frac{2}{1}$$

And,
$$\frac{AE}{CE} = \frac{12}{6} = \frac{2}{1}$$

$$\Rightarrow \frac{AD}{BD} = \frac{AE}{CE}$$



Thus, DE divides sides AB and AC of \triangle ABC in the same ratio. Therefore, by the conserve of basic proportionality theorem we have DE | |BC.

- Ex.3 In a trapezium ABCD AB | |DC and DC = 2AB. EF drawn parallel to AB cuts AD in F and BC in E such that $\frac{BE}{EC} = \frac{3}{4}$. Diagonal DB intersects EF at G. Prove that 7FE = 10AB.
- **Sol.** In $\triangle DFG$ and $\triangle DAB$,

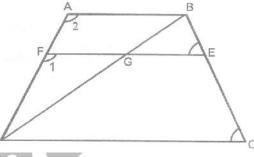
$$\angle 1 = \angle 2$$
 [Corresponding $\angle s :: AB \mid |FG|$

$$\angle$$
FDG = \angle ADB [Common]

∴ ΔDFG ~ ΔDAB [By AA rule of similarity]

$$\therefore \frac{DF}{DA} = \frac{FG}{AB}$$

....(i)



Again in trapezium ABCD

$$\frac{AF}{DF} = \frac{BE}{EC}$$

$$\Rightarrow \frac{AF}{DF} = \frac{3}{4}$$

$$\frac{BE}{EC} = \frac{3}{4} (given)$$

$$\Rightarrow \frac{AF}{DF} = 1 = \frac{3}{4} + 1$$

$$\Rightarrow \frac{AF + DF}{DF} = \frac{7}{4}$$

$$\Rightarrow \frac{AD}{DF} = \frac{7}{4}$$

$$\Rightarrow \frac{DF}{AD} = \frac{4}{7} \qquad \dots (ii)$$

From (i) and (ii), we get

$$\frac{FG}{AB} = \frac{4}{7}$$
 i.e. $FG = \frac{4}{7}AB$ (iii)

In $\triangle BEG$ and $\triangle BCD$, we have

$$\therefore \frac{BE}{BC} = \frac{EG}{CD}$$

$$\therefore \frac{3}{7} = \frac{EG}{CD} \qquad \left[\because \frac{BE}{EG} = \frac{3}{7} \text{ i.e.} \cdot \frac{EC}{BE} = \frac{4}{3} \Rightarrow \frac{EC + BE}{BE} = \frac{4+3}{3} \right] \Rightarrow \frac{BC}{BE} = \frac{7}{3}$$

$$\therefore EG = \frac{3}{7}CD = \frac{3}{7}(2AB) \left[\because CD = 2AB \text{ (given)} \right]$$

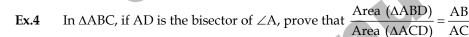
$$\therefore EG = \frac{6}{7}AB$$

Adding (iii) and (iv), we get

$$FG + EG = \frac{4}{7}AB + \frac{6}{7}AB = \frac{10}{7}AB$$

$$\Rightarrow$$
 EF = $\frac{10}{7}$ AB i.e., 7EF = 10AB.

Hence proved.

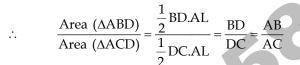


Sol. In \triangle ABC, AD is the bisector of \angle A.

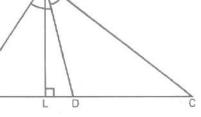
$$\therefore \frac{AB}{AC} = \frac{BD}{DC}$$

....(i) [By internal bisector theorem]

From A draw $AL \perp BC$



[From (i)]



Hence Proved.

- **Ex.5** \angle BAC = 90⁰, AD is its bisector. IF DE \perp AC, prove that DE \times (AB + AB) = AB \times AC.
- **Sol.** It is given that AD is the bisector of $\angle A$ of $\triangle ABC$.

$$\therefore \frac{AB}{AC} = \frac{BD}{DC}$$

$$\Rightarrow \frac{AB}{AC} + 1 = \frac{BD}{DC} + 1$$

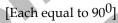
[Adding 1 on both sides]

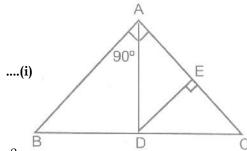
$$\varnothing$$
 $\frac{AB + AC}{AC} = \frac{BD + DC}{DC}$

$$\varnothing \qquad \frac{AB + AC}{AC} = \frac{BC}{DC}$$

In Δ 's CDE and CBA, we have

[Common]





So, by AA-criterion of similarity

$$\Delta$$
 CDE ~ Δ CBA

$$\Rightarrow \frac{CD}{CB} = \frac{DE}{BA}$$

$$\Rightarrow \frac{AB}{DE} = \frac{BC}{DC}$$

....(ii)

From (i) and (ii), we have

$$\Rightarrow \frac{AB + AC}{AC} = \frac{AB}{DE}$$

$$\Rightarrow$$
 DE × (AB + AC) = AB × AC.

Ex.6 In the given figure, PA, QB and RC are each perpendicular to AC. Prove that $\frac{1}{x} + \frac{1}{z} = \frac{1}{y}$

Sol. In $\triangle PAC$, we have $BQ \mid |AP|$

$$\Rightarrow \frac{BQ}{AP} = \frac{CB}{CA}$$

$$\Rightarrow \frac{y}{x} = \frac{CB}{CA}$$

In \triangle ACR, we have BQ | | CR

$$\Rightarrow \frac{BQ}{CR} = \frac{AB}{AC}$$

[
$$\therefore \Delta ABQ \sim \Delta ACR$$
]

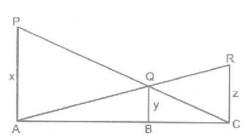
$$\Rightarrow \frac{y}{z} = \frac{AB}{AC}$$

Adding (i) and (ii), we get

$$\frac{y}{x} + \frac{y}{z} = \frac{CB}{AC} + \frac{AB}{AC}$$

$$\Rightarrow \frac{y}{x} + \frac{y}{z} = \frac{AB + BC}{AC}$$

$$\Rightarrow \frac{y}{x} + \frac{y}{z} = \frac{AC}{AC}$$



$$\Rightarrow \frac{y}{x} + \frac{y}{z} = 1$$

$$\Rightarrow \frac{1}{x} + \frac{1}{z} = \frac{1}{y}$$

Hence Proved.

- **Ex.7** In the given figure, AB \mid CD. Find the value of x.
- **Sol.** Since the diagonals of a trapezium divide each other proportionally.

$$\therefore \frac{AO}{OC} = \frac{BO}{OD}$$

$$\Rightarrow \frac{3x-19}{x-3} = \frac{x-4}{4}$$

$$\Rightarrow$$
 12x - 76 = x^2 - 4x - 3x + 12

$$\Rightarrow x^2 - 19x + 88 = 0$$

$$\Rightarrow$$
 $x^2 - 11x - 8x + 88 = 0$

$$\Rightarrow (x-8)(x-11)=0$$

$$\Rightarrow$$
 $x = 8 \text{ or } x = 11.$

