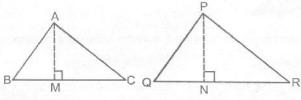
6.3 AREAS OF SIMILAR TRIANGLS

Statement: The ratio of the areas of two similar triangles is equal to the square of the ratio of their

corresponding sides.

Given: Two triangles ABC and PQR such that \triangle ABC ~ \triangle PQR [Shown in the figure]



To Prove:
$$\frac{\operatorname{ar}(ABC)}{\operatorname{ar}(PQR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{CA}{RP}\right)^2$$

Construction: Draw altitudes AM and PN of the triangle ABC an PQR.

Proof:
$$ar(ABC) = \frac{1}{2}BC \times AM$$

And
$$ar(PQT) = \frac{1}{2}QR \times PN$$

So,
$$\frac{\operatorname{ar}(ABC)}{\operatorname{ar}(PQR)} = \frac{\frac{1}{2}\operatorname{BC} \times AM}{\frac{1}{2}\operatorname{QR} \times \operatorname{PN}} = \frac{\operatorname{BC} \times AM}{\operatorname{QR} \times \operatorname{PN}}$$
(i)

Now, in \triangle ABM and \triangle PQN,

And
$$\angle B = \angle Q$$
 [As $\triangle ABC \sim \triangle PQR$]

$$\angle M = \angle N$$
 [90⁰ each]

So,
$$\triangle ABM \sim \triangle PQN$$
 [AA similarity criterion]

Therefore,
$$\frac{AM}{PN} = \frac{AB}{PO}$$
(ii)

Also,
$$\triangle ABC \sim \triangle PQR$$
 [Given]

So,
$$\frac{AB}{PO} = \frac{BC}{OR} = \frac{CA}{RP}$$
(iii)

Therefore,
$$\frac{\operatorname{ar}(ABC)}{\operatorname{ar}(PQR)} = \frac{BC}{QR} \times \frac{AB}{PQ}$$
 [From (i) and (ii)]
$$= \frac{AB}{PQ} \times \frac{AB}{PQ}$$
 [From (iii)]

$$\left(\frac{AB}{PQ}\right)^2$$

Now using (iii), we get

$$\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(\Delta PQR)} = \left(\frac{AB}{PQ}\right)^2 = \left(\frac{BC}{QR}\right)^2 = \left(\frac{CA}{RP}\right)^2$$

Properties of Areas of Similar Triangles:

- (i) The areas of two similar triangles are in the ratio of the squares of corresponding altitudes.
- (ii) The areas of two similar triangles are in the ratio of the squares of the corresponding medians.
- (iii) The area of two similar triangles are in the ratio of the squares of the corresponding angle bisector segments.
- **Ex.8** Prove that the area of the equilateral triangle described on the side of a square is half the area of the equilateral triangle described on its diagonals.
- **Sol. Given:** A square ABCD. Equilateral triangles ΔBCE and ΔACF have been described on side BC and diagonals AC respectively.

To prove: Area (ΔBCE) = $\frac{1}{2}$. Area (ΔACF)

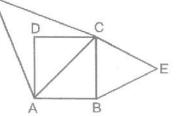
Proof: Since \triangle BCE and \triangle ACF are equilateral. Therefore, they are equiangular (each angle being equal

to 60°) and hence $\Delta BCE \sim \Delta ACF$.

$$\Rightarrow \frac{\text{Area}(\Delta BCE)}{\text{Area}(\Delta ACF)} = \frac{BC^2}{AC^2}$$

$$\Rightarrow \frac{\text{Area}(\Delta BCE)}{\text{Area}(\Delta ACF)} = \frac{BC^2}{\left(\sqrt{2}BC\right)^2} = \frac{1}{2}$$

$$\Rightarrow \frac{\text{Area}(\Delta BCE)}{\text{Area}(\Delta ACF)} = \frac{1}{2}$$



∴ ABCD is a square
∴ Diagonal =
$$\sqrt{2}$$
 (side)
⇒ AC = $\sqrt{2}$ BC

Hence Proved.