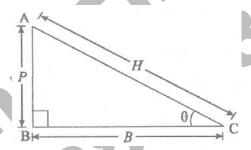
CHAPTER – 8 TRIGONOMETRY

8.1 INTRODUCTION AND FORMULAS OF TRIGONOMETRY

Trigonometry means, the science which deals with the measurement of triangles.

(a) Trigonometric Ratios:



A right angled triangle is shown in **Figure.** $\angle B$ Is of 90° Side opposite to $\angle B$ be called **hypotenuse**. There are two other angles i.e. $\angle A$ and $\angle C$. It we consider $\angle C$ as θ , then opposite side to this angle is called **perpendicular** and side adjacent to θ is called base.

(i) Six Trigonometry Ratio are:

$$\sin \theta = \frac{\text{Perpenicular}}{\text{Hypotenuse}} = \frac{P}{H} = \frac{AB}{AC}$$

$$\cos \theta = \frac{Base}{\text{Hypotenuse}} = \frac{B}{H} = \frac{BC}{AC}$$

$$\tan \theta = \frac{\text{Perpendicular}}{Base} = \frac{P}{B} = \frac{AB}{BC}$$

$$\cos es\theta = \frac{\text{Hypoteuse}}{\text{Perpendicular}} = \frac{H}{P} = \frac{AC}{AB}$$

$$\sec \theta = \frac{\text{Hypotenuse}}{\text{Base}} = \frac{H}{B} = \frac{AC}{BC}$$

$$\cot \theta = \frac{\text{Base}}{\text{Parpendicular}} = \frac{B}{P} = \frac{BC}{AB}$$

(ii) Interrelationship is Basic Trigonometric Ratio:

$$tan \theta = \frac{1}{\cot \theta} \implies \cot \theta = \frac{1}{\tan \theta}$$

$$\cos \theta = \frac{1}{\sec \theta} \implies \sec \theta = \frac{1}{\cos \theta}$$

$$\sin \theta = \frac{1}{\cos \cot \theta} \implies \csc \theta = \frac{1}{\sin \theta}$$

We also observe that

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 \Rightarrow $\cot \theta = \frac{\cos \theta}{\sin \theta}$

(b) Trigonometric Ratios for some Std. Angles:

$\theta \rightarrow$	0	30°	45°	60°	90°
Sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
Cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
Tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Not defined
Cot	Not defined	$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0
Sec	1	$\frac{2}{\sqrt{3}}$	$\sqrt{2}$	2	Not defined
Cosec	Not defined	2	$\sqrt{2}$	$\frac{2}{\sqrt{3}}$	1

(c) Trigonometric Ratio of Complementary Angles:

$$\sin(90-\theta) = \cos\theta$$

$$\cos(90 - \theta) = \sin\theta$$

$$\tan(90-\theta) = \cot\theta$$

$$\cot (90 - \theta) = \tan \theta$$

$$sec(90-\theta) = cosec\theta$$

$$\cos \operatorname{ec} (90 - \theta) = \sec \theta$$

(d) Trigonometric Identities:

(i)
$$\sin^2\theta + \cos^2\theta = 1$$

(A)
$$\sin^2 \theta = 1 - \cos^2 \theta$$

(B)
$$\cos^2 \theta = 1 - \sin 2\theta$$

(ii)
$$1 + \tan^2 \theta = \sec^2 \theta$$

(A)
$$\sec^2 \theta - 1 = \tan^2 \theta$$

(B)
$$\sec^2 \theta - \tan^2 \theta = 1$$

(C)
$$\tan^2 \theta - \sec^2 \theta = -1$$

(iii)
$$1 + \cot^2 \theta = \cos \sec^2 \theta$$

$$\cos ec^2\theta - 1 = \cot^2\theta$$

(B)
$$\cos \operatorname{ec}^2 \theta - \cot^2 \theta = 1$$

(C)
$$\cot^2 \theta - \cos ec^2 \theta = -1$$