Chapter - 1 ASSIGNMENT

- Q1. If f(x) = x + 7 and g(x) = x 7, find $(f \circ g)(7)$.s
- Q2. Let * be a binary operation defined by a*b = 2a + b 3. Find 3*4.
- Q3. If f(x) is an invertible function, find the inverse of $f(x) = \frac{3x-2}{5}$.
- Q4. Let * be a binary operation defined by a*b = 3a + 4b 2. Find 4*5.
- Q5. (i) Is the binary operation *, defined on the set N, given by $a*b = \frac{a+b}{2}$ for all a, b ϵ N, commutative?
 - (ii) Is the above binary operation * associative?
- Note: In question number 5, in place of N it should be Q or R etc. In fact, on N it is not and operation.
- Q6. Show that the relation R defined by $(a, b) R(c, d) \Rightarrow a+d = b+c$ on the set N \times N Is an equivalence relation.
- Q7. Let T be the set of all triangles in a plane with R as a relation in T given by $R=\{(T_1,T_2): T_1\cong T_2\}$. Show that R is and equivalence relation.
- Q8. Show that the relation R defined by $R = \{(a, b): a-b \text{ is divisible by 3; a, b } \in N\}$ Is an equivalence relation.
- Q9. If $f(x) = \sqrt{x}$, (x>0) and $g(x) = x^2 1$, find if fog = gof.
- Q10. If $f(x) = \frac{x-1}{x+1}$, $(x \neq -1, 1)$, show that fof is an identity function.
- Q11. If $f(x) = \frac{5x+3}{4x-5}$, $\left(x \neq \frac{5}{4}\right)$, show that fof is an identity function.

