ANSWER PAPER-1

1. In how many of the distinct permutations of the letters in MISSISSIPPI do the four I's not come together?

Correct Answer:

Explanation:

Total letters of the word MISSISSIPPI = 11 Here M=1, I=4, S=4 and P=2

$$\therefore \text{ Number of permutations} = \frac{11!}{4!4!2!}$$

$$= \frac{11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4!}{4! \times 4 \times 3 \times 2 \times 1 \times 2 \times 1} = 34650$$

when the four I's come together then it becomes one letter so total number of letters in the word when all I's come together = 8.

$$\therefore \text{ Number of Permutations} = \frac{8!}{4!2!} = \frac{8 \times 7 \times 6 \times 5 \times 4!}{4! \times 2 \times 1} = 840$$

Number of permutations when four I's do not come together = 34650 - 840 = 33810.

2. Find the modulus and the arguments of the complex number

$$z = -\sqrt{3} + i$$

Correct Answer:

Explanation:

Here
$$z = -\sqrt{3} + i = r(\cos \theta + i \sin \theta)$$

 $\Rightarrow r \cos \theta = -\sqrt{3}$ and $r \sin \theta = 1$

Squaring both sides of (i) and adding

$$r^{2}(\cos^{2}\theta + \sin^{2}\theta) = 3 + 1 \Rightarrow r^{2} = 4 \Rightarrow r = 2$$

 $\therefore 2\cos\theta = -\sqrt{3}$ and $2\sin\theta = 1$

$$\Rightarrow \cos \theta = \frac{-\sqrt{3}}{2}$$
 and $\sin \theta = \frac{1}{2}$

Since $\sin \theta$ is positive and $\cos \theta$ is negative $\sin \theta$ lies in second quadrant

$$\theta = \left(\pi - \frac{\pi}{6}\right) = \frac{5\pi}{6}$$

$$|z| = 2 \text{ and arg } (z) = \frac{5\pi}{6}$$

3. For any two complex numbers z_1 and z_2 prove that

$$Re(z_1z_2) = Re\ z_1\ Re\ z_2 - Im\ z_1\ Im\ z_2.$$

Correct Answer:

Explanation:

Let
$$z_1 = a_1 + ib_1$$
 and $z_2 = a_2 + ib_2$

Then $Re(z_1) = a_1$, $Re(z_2) = a_2$, $Im(z_1) = b_1$ and $Im(z_2) = b_2$

Now
$$z_1 z_2 = (a_1 + ib_1) (a_2 + ib_2)$$

$$= a_1 a_2 + i \, a_1 b_2 + i \, a_2 b_1 + i^2 \, b_1 b_2$$

$$= (a_1 a_2 - b_1 b_2) + i(a_1 b_2 + a_2 b_1) \ (\because i^2 = -1)$$

$$Re(z_1z_2) = a_1a_2 - b_1b_2$$

$$= \operatorname{Re}(z_1) \operatorname{Re}(z_2) - \operatorname{Im}(z_1) \operatorname{Im}(z_2)$$

4. Prove
$$\frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \cot 3x$$

Correct Answer:

Explanation:

We have L.H.S. =
$$\frac{\cos 4x + \cos 3x + \cos 2x}{\sin 4x + \sin 3x + \sin 2x} = \frac{(\cos 4x + \cos 2x) + \cos 3x}{(\sin 4x + \sin 2x) + \sin 3x}$$

$$= \frac{2\cos\left(\frac{4x+2x}{2}\right)\cos\left(\frac{4x-2x}{2}\right) + \cos 3x}{2\sin\left(\frac{4x+2x}{2}\right)\cos\left(\frac{4x-2x}{2}\right) + \sin 3x}$$

$$\because \sin C + \sin D = 2 \sin \left(\frac{C + D}{2}\right) \cos \left(\frac{C - D}{2}\right)$$

$$\cos C + \cos D = 2 \cos \left(\frac{C + D}{2}\right) \cos \left(\frac{C - D}{2}\right)$$

$$= \frac{2\cos 3x \cos x + \cos 3x}{}$$

$$= \frac{\cos 3x (2 \cos x + 1)}{\sin 3x (2 \cos x + 1)} = \frac{\cos 3x}{\sin 3x} = \cot 3x = R.H.S$$

5. Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Find the number of relations from A to B.

Correct Answer:

Explanation:

Here A = $\{x, y, z\}$ and B = $\{1, 2\}$

Number of elements in set A = 3

Number of elements in set B = 2

Number of subsets of $A \times B = 3 \times 2 = 6$

Number of relations from A to B = 2^6

Hint:

6. Let A = $\{9, 10, 11, 12, 13\}$ and let $9 = 3 \times 3$ be defined by f (n) = the highest prime factor of n. Find the range of f.

Correct Answer:

Explanation:

Here $A = \{9, 10, 11, 12, 13\}$

For n = 9, f (9) = 3($9 = 3 \times 3$ and 3 is highest prime factor of 9)

For n = 10, f (10) = 5 (: $10 = 2 \times 5$)

For n = 11, f(11) = 11 (: $11 = 1 \times 11$)

For n = 12, f (12) = 3 (: $12 = 3 \times 2 \times 2$)

For n = 13, f (13) = 13 (: $13 = 1 \times 13$)

∴ Range of f - {5, 11, 3, 13}

= {3, 5, 11, 13}

7. In how many ways can the letters of the word ASSASSINATION be arranged so that all the S's are together?

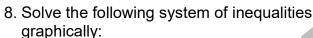
Correct Answer:

Explanation:

Here total letters are 13 in the word ASSASSINATION in which A appears 3 times, S appears 4 times, 1 appears 2 times and N appears 2 times. Now four S's taken together become a single letter and other remaining letters taken with this single letter.

$$\therefore \text{ Number of arrangements } = \frac{10!}{3!2!2!} = \frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3!}{3!2 \times 1 \times 2 \times 1}$$

 $= 10 \times 9 \times 8 \times 7 \times 6 \times 5 = 151200$



Correct Answer:

Explanation:

The given inequality is 2 x + y≥4

Draw the graph of the line 2x + y = 4

Table of values satisfying the equation 2x + y = 4

Putting (0, 0) in the given inequation, we have $2 \times 0 + 0 \ge 0 \Rightarrow 0 \ge 4$, which is false.

∴ Half plane of $2x + y \ge 4$ is away from origin.

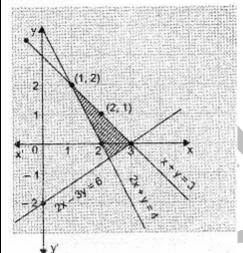
Also the given inequality is x+y≤3

Draw the graph of the line x + y = 3

Table of values satisfying the equation x + y = 3

 x
 2
 1

 y
 1
 2



Putting (0, 0) in the given inequation, we have $0 + 0 \le 3 \Rightarrow 0 \le 3$, which is true

∴ Half plane of $x+y \le 3$ is towards origin.

The given inequality is $2x - 3y \le 6$

Draw the graph of the line 2x-3y=6

Table of values satisfying the equation 2x-3y=6

x	0	3
y	-2	0

Putting (0, 0) in the given inequation, we have $2 \times 0 - 3 \times 0 \le 6 \implies 0 \le 6$, which is true,

∴ Half plane of $2x-3y \le 6$ is towards origin.

Hint:

9. Prove that : $\cos A \cos(60 - A) \cos(60 + A) = \frac{1}{4} \cos 3A$

Correct Answer:

Hint:

10. Prove that: tan a + 2 tan 2a + 4 tan 4a + 8 cot 8a = cot a

Correct Answer:

Hint:

11. A college awarded 38 medals in Football, 15 in Basketball and 20 to Cricket. If, these medals went to a total of 58 men and only three men got medals in all the three sports, how many received medals in exactly two of the three sports?

Correct Answer:

Hint:

