Chapter 1: Real Numbers

MULTIPLE-CHOICE QUESTIONS -

For Basic and Standard Levels

Choose the correct answer from the given four options in the following questions:

1.	The	number	which	when	divided	by 19	gives	the	quotient	4 and	remainde	r
	4 is											

(a) 76

(b) 80

(c) 72

(d) 152

2. For some integer *q* every even integer is of the form

(a) q

(b) q + 1

(d) 2q + 1

3. For some integer m, every odd integer is of the form

(a) m + 1

(b) m

(c) 2m

(d) 2m + 1

4. Any one of the numbers a, (a + 2) and (a + 4) is a multiple of

(a) 2

(b) 3

(c) 5

(d) 7

[CBSE 2010]

5. Euclid's division lemma states that for two positive integers *a* and *b*, there exist unique integers q and r such that a = bq + r, where r must satisfy

(a) 0 < r < b

(b) $0 < r \le b$

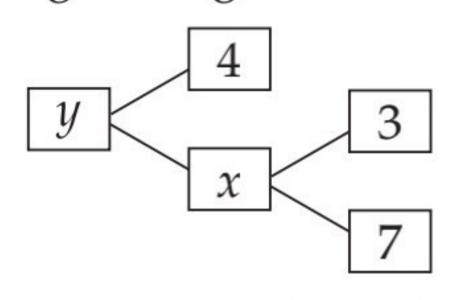
(c) $0 \le r < b$

(*d*) 1 < r < b

[CBSE 2012]

6. For any positive integer *a* and 3, there exist unique integers *q* and *r* such that a = 3q + r, where r must satisfy

(a) $0 \le r < 3$


(b) 1 < r < 3

(c) 0 < r < 3

(*d*) $0 < r \le 3$

[CBSE SP 2012]

7. The values of *x* and *y* in the given figure are

(a) x = 10, y = 14

(b) x = 21, y = 84

(c) x = 21, y = 25

(d) x = 10, y = 40

8. The maximum number of factors of a prime number is

(a) 1

(b) 2

(c) 3

9. The prime factors of the denominator of the fraction $\frac{3}{80}$ are

(a) 5 and 8 (b) 2 and 5 (c) 2, 4 and 5 (d) 1, 2 and 5

10. How many prime numbers are of the form 10n + 1, where n is a natural number such that $1 \le n < 10$?

(a) 5

(b) 6

(c) 4

(d) 3

11.	If <i>a</i> and <i>b</i> are copraint (<i>a</i>) even numbers (<i>c</i>) odd numbers	rime, then a^2 and b^2	(b)	not coprime coprime					
- 200 <u>2</u>			` '	1	C			.1 .1	
12.	If 3 is the least pr least prime factor	time factor of p and of $(p + q)$ is	51	s the least prim	e ta	ctor	ot	q, then the	5
	(a) 11	(b) 2	(c)	5	<i>(d)</i>	3			
	not 2. \therefore p must be a	least prime factor of an odd number. Similime factor of $(p + q)$ is	larly	*					
13.	If a and b ($a > b$) a	re two odd prime n	ıum	bers, then $a^2 - b$	v^2 is				
		(b) even prime				pri	me		
14.	$119^2 - 111^2$ is a		10 1074	•	ar (0.0)	•			
	(a) prime number	•	(b)	composite nun	nber	•			
	(c) an odd prime		0.00	an odd compos			nhe	r	
	(c) an odd prime	riamoci	(11)	arr oaa compo.	orte			3SE SP 2011]
15	The exponent of 3	in the prime factor	ricat	ion of 243 is					
13.	(a) 3	(b) 5	(c)		(<i>d</i>)	6			
16		` /	()		<i>(u)</i>	O			
16.		prime numbers, the			(1)	1			
	(a) 2	(b) 0	` '	either 1 or 2	` '		23	2 9	
17.	The HCF of the sr	nallest composite n	um	ber and the sma		-			
	(a) 2	(b) 1	(c)	4	(d)	3		[CBSE 2008]
18.	The HCF of two c	onsecutive integers	is						
	(a) 0	(b) 1	(c)	4	(<i>d</i>)	2	[CE	3SE SP 2011]
19.	If $m = dn + r$, who	ere m , n are positiv	e ir	tegers and d ar	nd r	are	int	tegers, ther	ı
	n is the HCF of m ,	, <i>n</i> if							
	(a) $r = 1$		(b)	$0 < r \le 1$					
	(c) $r = 0$		(d)	r is a real num	ber		[CE	3SE SP 2011]
20.	If LCM $(60, 72) = 3$	360, then HCF (60,	72)	is					
	(a) 18	(b) 6	(c)	12	(<i>d</i>)	24			
21.	If the product of t	wo numbers is 5780) an	d their HCF is	17, t	hen	the	eir LCM is	
	(a) 9826	(b) 680	(c)	340	(<i>d</i>)	425	,		
22.	If HCF and LCM numbers is	of two numbers are	e 4 a	and 9696, then t	he p	orod	luc	t of the two)
	(a) 9696	(b) 24242	(c)	38784	(<i>d</i>)	484	8	[CBSE 2010]
23.	If HCF $(a, 8) = 4$, I	LCM(a, 8) = 24, the	n a	is					
	(a) 8	(b) 10	(c)	12	(<i>d</i>)	14	[C	BSE SP 2011]
24.	If two positive int	egers A and B are	writ	ten as $A = ab^2$ a	nd i	B =	a ³ b	, where a, l	5
	-	rs, then LCM (A, B)							
	(a) ab	(b) a^2b^2	(c)	a^3b^2	(<i>d</i>)	a^4b^3	3		
							[CE	SE SP 2011]

prime numbers, tl	hen HCF (A, B) is	***110	terr as rr mo a	ind B =	a^3b^2 , a , b being
(a) a^2b^2	A 10 (A)	(c)	$a^{3}b^{3}$	(<i>d</i>) <i>ab</i>	
LCM of $2^3 \times 3^2$ ar		6 5		15 ST	
(a) 2^3		(b)	3^3		
(c) $2^3 \times 3^3$		(d)	$2^3 \times 3^2$		[CBSE SP 2012]
$\pi = \frac{22}{7} \text{ is}$					
(a) a rational nun	nber	(b)	an irrational n	umber.	
(c) a prime numb	per	(<i>d</i>)	an even numbe	er	[CBSE SP 2012]
If x and y are two	rational numbers t	hen	x + y is		
(a) an irrational r	number				
(b) a rational nun	nber				
(c) either rational	or irrational numb	er			
(d) neither rationa	al nor irrational nu	mbe	r		
If <i>x</i> is a rational name all	umber and y is an i	rrat	ional number, t	hen x +	- <i>y</i> , <i>x</i> – <i>y</i> and <i>xy</i>
(a) rational numb	ers				
(b) irrational num	nbers				
(c) either rational	or irrational numb	ers			
(d) neither rationa	al nor irrational nu	mbe	rs		
$\sqrt{5} - 3 - 2 \text{ is}$					
(a) a rational nun	nber	(b)	a natural numb	oer	
(c) equal to zero		(1)	an irrational nu	_	[CDCE 2010]
(c) equal to zero		(u)		umber	[CBSE 2010]
$2 + \sqrt{3} + \sqrt{5}$ is		<i>(u)</i>		umber	[CBSE 2010]
· · · ·	ıber		an integer	umber	[CBSE 2010]
$2 + \sqrt{3} + \sqrt{5}$ is		(b)			[CBSE 2010]
$2+\sqrt{3}+\sqrt{5}$ is (a) a natural num		(b)	an integer		
$2+\sqrt{3}+\sqrt{5}$ is (a) a natural num (c) a rational num	nber	(b) (d)	an integer	umber	
$2+\sqrt{3}+\sqrt{5}$ is (a) a natural num (c) a rational num $3+\sqrt{5}$ is	nber	(b) (d) (b)	an integer an irrational n	umber	
$2+\sqrt{3}+\sqrt{5}$ is (a) a natural num (c) a rational num $3+\sqrt{5}$ is (a) a rational num (c) an integer	nber	(b) (d) (b) (d)	an integer an irrational man irrational man integer	umber umber	[CBSE 2010]
$2+\sqrt{3}+\sqrt{5}$ is (a) a natural num (c) a rational num $3+\sqrt{5}$ is (a) a rational num (c) an integer	nber	(b) (d) (b) (d)	an integer an irrational man irrational man integer	umber umber	[CBSE 2010]
$2+\sqrt{3}+\sqrt{5}$ is (a) a natural num (c) a rational num $3+\sqrt{5}$ is (a) a rational num (c) an integer The smallest ration	nber	(b) (d) (d) thou	an integer an irrational man irrational man integer	umber umber	[CBSE 2010] to get a rational
$2+\sqrt{3}+\sqrt{5}$ is (a) a natural num (c) a rational num $3+\sqrt{5}$ is (a) a rational num (c) an integer The smallest ration number is (a) $\sqrt{4}-5$	nber nber nal number which so $(b) -\sqrt{5}$	(b) (d) (b) (d) (hou (c)	an integer an irrational number and irrational number and led to $4 - \sqrt{5}$	umber $\frac{1}{4} - \sqrt{5}$ $(d) \sqrt{5}$	[CBSE 2010] to get a rational
$2+\sqrt{3}+\sqrt{5}$ is (a) a natural num (c) a rational num $3+\sqrt{5}$ is (a) a rational num (c) an integer The smallest ration number is (a) $\sqrt{4}-5$	nber nber nal number which s $(b) -\sqrt{5}$ ional number by wh	(b) (d) (b) (d) (hou (c)	an integer an irrational number and irrational number and led to $4 - \sqrt{5}$	umber $\frac{1}{4} - \sqrt{5}$ $(d) \sqrt{5}$	[CBSE 2010] to get a rational
$2+\sqrt{3}+\sqrt{5}$ is (a) a natural num (c) a rational num $3+\sqrt{5}$ is (a) a rational num (c) an integer The smallest ration number is (a) $\sqrt{4}-5$ The smallest irration a rational number	nber nber nal number which s $(b) -\sqrt{5}$ ional number by where is	(b) (d) (b) (d) hou (c)	an integer an irrational man irrational man irrational man not real ld be added to $4 - \sqrt{5}$ $\sqrt{18}$ should be	umber $\frac{1}{4} - \sqrt{5}$ $(d) \sqrt{5}$	[CBSE 2010] to get a rational
$2+\sqrt{3}+\sqrt{5}$ is (a) a natural num (c) a rational num $3+\sqrt{5}$ is (a) a rational num (c) an integer The smallest ration number is (a) $\sqrt{4}-5$ The smallest irration a rational number (a) $\sqrt{18}$	nber nber nal number which s $(b) -\sqrt{5}$ ional number by wher is $(b) 2\sqrt{2}$	(b) (d) (b) (d) (c) (c) (c)	an integer an irrational man irrational man irrational man not real ld be added to $4 - \sqrt{5}$ $\sqrt{18}$ should be $\sqrt{2}$	umber $ \begin{array}{c} \text{umber} \\ -\sqrt{5} \\ \text{(d)} \sqrt{5} \\ \text{multip} \\ \text{(d)} 2 \end{array} $	[CBSE 2010] to get a rational blied so as to get
$2+\sqrt{3}+\sqrt{5}$ is (a) a natural num (c) a rational num $3+\sqrt{5}$ is (a) a rational num (c) an integer The smallest ration number is (a) $\sqrt{4}-5$ The smallest irration a rational number (a) $\sqrt{18}$	nber nber nal number which s $(b) -\sqrt{5}$ ional number by where is	(b) (d) (b) (d) (c) (c) (c)	an integer an irrational man irrational man irrational man not real ld be added to $4 - \sqrt{5}$ $\sqrt{18}$ should be $\sqrt{2}$	umber $ \begin{array}{c} \text{umber} \\ -\sqrt{5} \\ \text{(d)} \sqrt{5} \\ \text{multip} \\ \text{(d)} 2 \end{array} $	[CBSE 2010] to get a rational blied so as to get
	(a) 2^3 (c) $2^3 \times 3^3$ $\pi = \frac{22}{7}$ is (a) a rational num (c) a prime numb If x and y are two (a) an irrational rational rational num (b) a rational num (c) either rational rational rational rational number all (a) rational number at a rational number of x is a	(c) $2^3 \times 3^3$ $\pi = \frac{22}{7}$ is (a) a rational number (b) a prime number (c) a prime number (d) an irrational number (e) either rational or irrational number (f) a rational number (g) either rational or irrational number (g) either rational nor irrational number (g) either rational number and g is an irrational number and g is an irrational numbers (g) irrational numbers (g) either rational numbers	(a) $2^3 \times 3^3$ (b) (c) $2^3 \times 3^3$ (d) $\pi = \frac{22}{7}$ is (a) a rational number (b) (c) a prime number (d) If x and y are two rational numbers then (a) an irrational number (b) a rational number (c) either rational or irrational number (d) neither rational nor irrational number (d) neither rational number and y is an irrational number are all (a) rational numbers (b) irrational numbers (c) either rational or irrational numbers (d) neither rational or irrational numbers (d) neither rational nor irrational number (d) a rational number (d) neither rational nor irrational number (d) neither rational number (e) (e)	(a) $2^3 \times 3^3$ (b) 3^3 (c) $2^3 \times 3^2$ (d) $2^3 \times 3^2$ $\pi = \frac{22}{7}$ is (a) a rational number (b) an irrational number (c) a prime number (d) an even number (a) an irrational number (b) a rational number (c) either rational or irrational number (d) neither rational nor irrational number If x is a rational number and y is an irrational number, if x is a rational number and y is an irrational number, if x is a rational number (d) rational numbers (e) irrational numbers (f) irrational numbers (f) irrational numbers (g) irrational numbers (h) a natural number ((a) 2^3 (b) 3^3 (c) $2^3 \times 3^3$ (d) $2^3 \times 3^2$ $\pi = \frac{22}{7}$ is (a) a rational number (b) an irrational number. (c) a prime number (d) an even number If x and y are two rational numbers then $x + y$ is (a) an irrational number (b) a rational number (c) either rational or irrational number (d) neither rational nor irrational number If x is a rational number and y is an irrational number, then x are all (a) rational numbers (b) irrational numbers (c) either rational or irrational numbers (d) neither rational or irrational numbers $\sqrt{5} - 3 - 2$ is (a) a rational number

	(c) $\sqrt{3}\sqrt{27}$	(<i>d</i>)	$\sqrt{36}\sqrt{2}$		[CBSE SP 2011]
36.	Which of the following is not an irra	tion	al number?		
	(a) $3 + \sqrt{5}$ (b) $7 + \sqrt{4}$	(c)	$\sqrt{7} + \sqrt{4}$	(d) 4	$4 - \sqrt{2}$
37.	If p is a prime number and p divides	k^2 , t	then <i>p</i> divides		
	(a) $2k^2$	(b)	k		
	(c) 3k	(<i>d</i>)	none of these		[CBSE 2010]
	Rational number $\frac{p}{q}$, $q \neq 0$ will be term			the p	rime factorisation
	of q is of the form (m and n are positive)				
	(a) $2^m \times 3^n$ (c) $3^m \times 5^n$		$2^m \times 5^n$		[CDCE CD 2010]
		` ,	$3^m \times 7^n$	1	[CBSE SP 2010]
39.	Which of the following rational number 125			0	*
	(a) $\frac{125}{441}$ (b) $\frac{77}{210}$	(c)	$\frac{15}{1600}$	<i>(d)</i>	$\frac{125}{2^2 \times 5^2 \times 7^2}$
	The decimal expression of $\frac{63}{72 \times 175}$ in (a) terminating				[CBSE SP 2011]
1 0.	The decimal expression of $\frac{65}{72 \times 175}$ i	S			
	(a) terminating	(b)	non-terminatir	ıg	
	(c) non-terminating and repeating	<i>(d)</i>	none of these		[CBSE 2010]
11.	The decimal expansion of π is	44.5			
	(a) terminating	3. 1.5	non-terminatir	ng no	1 0
	(c) non-terminating	` '	does not exist		[CBSE SP 2011]
12.	The decimal expansion of the number	$\frac{1}{2}$	will termina	te aft	er
	(a) one decimal place		two decimal pl		
	(c) three decimal places	(<i>d</i>)	more than thre	e de	cimal places [CBSE SP 2011]
13.	The decimal expansion of $\frac{17}{8}$ will term	mina	ate after how ma	ny p	laces of decimals?
	(a) 1	(b)	-	, ,	
	(c) 3		will not termin		[CBSE SP 2011]
14.	The decimal expansion of the rationa	ıl nı	14587 with $\frac{14587}{1250}$ with $\frac{1}{1250}$	rill te	rminate after
	(a) one decimal place	(b)	two decimal pl	laces	
	(c) three decimal places	(<i>d</i>)	four decimal p	laces	[CBSE SP 2011]
15.	The decimal expansion of number $\frac{1}{2}$	$\frac{44}{2 \times 5}$	$\frac{1}{3 \times 7}$ has		
	(a) a terminating decimal	(b)	non-terminatir	ıg bu	t repeating
	(c) non-terminating non-repeating	(<i>d</i>)	terminating afte	er two	places of decimal
					[CBSE SP 2012]

For Standard Level

	of k is			
	(a) 1650	(b) 1600	(c) 165	(d) 1625
				[CBSE SP 2011]
47.	If $a = 3 \times 5$, $b = 3 \times 5$	\times 5 ² and $c = 2^5 \times 5$,	then LCM (a, b, c) a	and HCF (a, b, c) are
	(a) 1200, 5		(b) 2400, 5	
	(c) 2400, 15		(d) 1200, 15	
48.	If $a = 2^2 \times 3^x$, $b =$	$2^2 \times 3 \times 5$, $c = 2^2 \times$	3×7 , and LCM (a	(a, b, c) = 3780, then x is
	equal to			
	(a) 1	(b) 3	(c) 2	(d) 0
49.	If the HCF of 85 a	nd 153 is expressib	le in the form $85n$ -	- 153, then the value of
	n is			
	(a) 3	(b) 2	(c) 4	(d) 1 [CBSE SP 2011]
50.	If the HCF of 408	and 1032 is express	sible in the form 103	$32m - 408 \times 5$, then the
	value of m is			
	(a) 4	(b) 3	(c) 1	(d) 2
51.	The greatest num	ber of 6 digits exact	tly divisible by 15, 2	24 and 36 is
	(a) 999924		(b) 999639	
	(c) 999999		(d) 999720	
52.	The least number t	that is divisible by al	ll the numbers from	1 to 10 (both inclusive)
	is			
	(a) 10	(b) 100	(c) 504	(d) 2520
53.	0	er which divides 2	281 and 1249 leavi	ng remainder 5 and 7
	respectively is			
	(a) 23	(b) 276	(c) 138	(d) 69
54.		ber which when div	vided by 17, 23 and	29 leaves a remainder
	11 in each case is		(1) 44 0= 0	
	(a) 493		(b) 11350	
	(c) 11339		(d) 667	
55.	$1.\overline{29}$ is			•
	(a) an integer	•	(b) a rational num	
	(c) a natural num	iber	(d) an irrational n	umber
56.	Prime factorisatio	n of the denominat	or of the rational n	umber 26.1234
	(a) is of the form	$2^m \times 5^n$ where m, n	are integers	
	(b) has factors oth	ner than 2 or 5		
		$2^m \times 5^n$ where m, n	0	0
	(d) is of the form	$2^m \times 5^n$ where m and	nd <i>n</i> are positive in	tegers

46. Given that HCF (2520, 6600) = 40, LCM (2520, 6600) = 252 $\times k$, then the value

- 57. Prime factorisation of the denominator of the rational number 52.9678 is
 - (a) of the form $2^m \times 5^n$ where m, n are integers
 - (b) of the form $2^m \times 5^n$ where m and n are positive integers
 - (c) of the form $2^m \times 5^n$ where m, n are rational numbers
 - (*d*) not of the form $2^m \times 5^n$ where *m*, *n* are non-negative integers
- 58. The smallest rational number by which $\frac{1}{3}$ should be multiplied so that its decimal expansion terminates after one place of decimal is
 - (a) $\frac{3}{10}$
- (b) $\frac{1}{10}$
- (c) 3
- $(d) \frac{3}{100}$

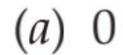
Chapter 2: Polynomials

MULTIPLE-CHOICE QUESTIONS

For Basic and Standard Levels

Choose the correct answer from the given four options in the following questions:

1. Which of the following is a polynomial?


(a)
$$3x^2 + \frac{1}{x} - 5$$

(b)
$$-2x^2 + 5\sqrt{x} + 8$$

(c)
$$\sqrt{2} x^3 + \sqrt{3} x^2 + \sqrt{5} x - 3$$

$$(d) \ \frac{3}{x^3} + 4x^2 - 5x + \frac{1}{3}$$

2. The graph of y = p(x) is given. The number of zeroes of p(x) are:

3. A real number α is called zero of the polynomial f(x) when

(a)
$$f(\alpha) = -2$$

(b)
$$f(\alpha) = 0$$

(c)
$$f(\alpha) = 1$$

$$(a) \ f(\alpha) = -2 \qquad \qquad (b) \ f(\alpha) = 0 \qquad \qquad (c) \ f(\alpha) = 1 \qquad \qquad (d) \ f(\alpha) = -1$$

4. The zeroes of the polynomial $x^2 + 7x + 12$ are:

(a)
$$3, 4$$
 (b) $-3, -4$ (c) $-3, 4$ (d) $3, -4$

$$(c) -3, 4$$

$$(d) 3, -4$$

5. If $p(x) = x^2 + 5x + 2$, then the value of p(3) + p(2) + p(0) is:

- **6.** The zeroes of the quadratic polynomial $x^2 + 43x + 222$ are:
 - (a) both equal

(b) one positive one negative

(c) both negative

- (d) both positive
- 7. The quadratic polynomial whose zeroes are $5 + \sqrt{2}$ and $5 \sqrt{2}$ is:

(a)
$$x^2 - 5x + 21$$

(b)
$$x^2 + 5x + 21$$

(c)
$$x^2 - 10x + 23$$

(d)
$$x^2 + 10x + 23$$

8. A quadratic polynomial whose sum and product of zeroes are $\sqrt{2}$ and $\frac{1}{2}$ respectively, is:

(a)
$$3x^2 + 3\sqrt{2}x + 1$$

(b)
$$3x^2 - 3\sqrt{2}x + 1$$

(c)
$$3x^2 - 3\sqrt{2}x - 1$$

(d)
$$-3x^2-3\sqrt{2}x+1$$

- 9. A quadratic polynomial, one of whose zero is $2 + \sqrt{5}$ and the sum of whose zeroes is 4 is
 - (a) $x^2 + 4x 1$

(b)
$$x^2 - 4x - 1$$

(c)
$$x^2 - 4x + 1$$

(d)
$$x^2 + 4x + 1$$

10. A quadratic polynomial, one of whose zero is $\sqrt{5}$ and the product of whose zeroes is $-2\sqrt{5}$ is

(a)
$$x^2 + (2 - \sqrt{5})x - 2\sqrt{5}$$

(b)
$$x^2 - (2 - \sqrt{5})x + 2\sqrt{5}$$

	(c) $x^2 + (2 - \sqrt{5})x$	$c + 2\sqrt{5}$	(d) $x^2 - (2 - \sqrt{5})x$	$-2\sqrt{5}$
11.	If the product of the	he zeroes of the qua	dratic polynomial 3	$3x^2 + 5x + k \text{ is } \frac{-2}{3}$, then
		(b) $k = -2$		3
12.	If one zero of the	polynomial p(x) = 5	$5x^2 + 13x - k$, is the	reciprocal of the other
	then			
	(a) $k = 13$	(b) $k = 5$	(c) $k = -5$	(<i>d</i>) $k = -13$
13.	If one of the zero	es of the quadratic	polynomial $(\alpha - 1)$	$x^2 + \alpha x + 1$ is -3 , then
	the value of α is			
	(a) $\frac{-2}{}$	(b) $\frac{2}{a}$	$(c) \frac{4}{3}$	$(d) \frac{3}{1}$

14. If α and β are the zero of the polynomial $f(x) = px^2 - 2x + 3p$ and $\alpha + \beta = \alpha\beta$, then the value of p is

(a)
$$\frac{-2}{3}$$
 (b) $\frac{2}{3}$ (c) $\frac{1}{3}$ [CBSE SP 2011]

15. If α and β are the zeroes of the polynomial $x^2 - 6x + k$ and $3\alpha + 2\beta = 20$, then

(a) k = -8 (b) k = 16 (c) k = -16 (d) k = 8

16. If *p* and *q* are the zeroes of the polynomial
$$ax^2 - 5x + c$$
 and $p + q = pq = 10$, then (a) $a = 5$, $c = \frac{1}{2}$ (b) $a = 1$, $c = \frac{5}{2}$ (c) $a = \frac{5}{2}$, $c = 1$ (d) $a = \frac{1}{2}$, $c = 5$

17. The polynomial which when divided by $-x^2 + x - 1$ gives a quotient x - 2 and remainder 3 is

remainder 3 is
$$(a) x^3 - 3x^2 + 3x - 5$$

$$(b) - x^3 - 3x^2 - 3x - 5$$

(c)
$$-x^3 + 3x^2 - 3x + 5$$
 (d) $x^3 - 3x^2 - 3x + 5$

18. The degree of the remainder when a cubic polynomial is divided by a quadratic polynomial is

$$(a) \le 1$$
 $(b) \ge 1$ $(c) 2$ $(d) \ge 2$

19. If α, β and γ be the zeroes of the polynomial $x^3 - x^2 - 10x - 8$, then the values of αβγ and αβ + βγ + γα are respectively

(a)
$$4, -5$$
 (b) $8, -10$ (c) $-8, 10$ (d) $-4, 5$

20. A cubic polynomial whose zeroes are -2, -3 and -1 is (a) $x^3 + 11x^2 + 6x + 1$ (b) $x^3 + 6x^2 + 11x + 6$

(c)
$$x^3 + 11x^2 + x + 6$$
 (d) $x^3 + 6x^2 + 6x + 11$

21. If two zeroes of the polynomial $x^3 + 7x^2 - 2x - 14$, are $\sqrt{2}$ and $-\sqrt{2}$ then the third zero is

22. The other two zeroes of the polynomial $x^3 - 8x^2 + 19x - 12$ if its one zero is x = 1, are

$$(a) 3, 4$$
 $(b) 3, -4$ $(c) -1, -4$ $(d) -1, 4$

23. If two zeroes of the polynomial $x^3 - 5x^2 - 16x + 80$ are equal in magnitude but opposite in sign, then zeroes are

(a)
$$4, -4, 5$$
 (b) $3, -3, -5$ (c) $2, -2, 3$ (d) $1, -1, 4$

24.	If α , β and γ are the zeroes of the polynomial $6x^3 + 3x^2 -$	$5x + 1$ then α^{-1}	$+ \beta^{-1} + \gamma^{-1}$
	is equal to		

(a) 5

(b) 6 (c) -5 (d) -6

25. The graph of the polynomial p(x) intersects the x-axis three times in distinct points, then which of the following could be an expression for p(x)?

(a) $4-4x-x^2+x^3$

(b) $3x^2 + 3x - 3$

(c) 3x + 3

(d) $x^2 - 9$

[CBSE SP 2012]

26. The sum and product respectively of zeroes of the polynomial $x^2 - 4x + 3$ are

(a) 3, 3 (b) 4, 3 (c) -4, +3 (d) $\frac{4}{3}$, 1

For Standard Level

27. If the sum of squares of zeroes of the quadratic polynomial $3x^2 + 5x + k$ is $\frac{-2}{3}$, then the value of *k* is

(a) $\frac{31}{6}$ (b) $\frac{31}{9}$

(c) $\frac{25}{6}$

28. If α , β are the zeroes of the polynomial $6y^2 - 2 + y$, then the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ is

(a) $\frac{-25}{36}$ (b) $\frac{25}{12}$ (c) $\frac{-25}{12}$ (d) $\frac{25}{36}$

29. If α and β are the zeroes of the quadratic polynomial x^2 – 5x + 4 then $\frac{1}{\alpha} + \frac{1}{\beta} - 2\alpha\beta$ is equal to

(a) $\frac{-37}{4}$ (b) $\frac{37}{4}$ (c) $\frac{-27}{4}$

30. If α and β are the zeroes of the polynomial $x^2 - 2 + x$ then $\left(\frac{1}{\alpha} - \frac{1}{\beta}\right)^2$ is

(a) $\frac{-9}{4}$ (b) $\frac{7}{4}$ (c) $\frac{9}{4}$ (d) $\frac{-7}{4}$

31. If α and β are the zeroes of the polynomial $x^2 - (k + 6)x + 2(2k - 1)$ and $\alpha + \beta = \frac{\alpha \beta}{2}$ then

(a) k = 6 (b) k = 2 (c) k = 14 (d) k = 7

32. If α and β are the zeroes of the quadratic polynomial $kx^2 + 4x + 4$ and $(\alpha + \beta)^2 - 2\alpha\beta = 24$, then

(a) $k = 1, \frac{-2}{3}$ (b) $k = -1, \frac{2}{3}$ (c) $k = \frac{1}{3}, 1$ (d) $k = -\frac{1}{3}, \frac{2}{3}$

33. If one of the zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d$ is zero, then the product of the other two zeroes is

(a) 0

- **34.** If the zeroes of the polynomial $x^3 12x^2 + 44x + c$ are in AP, then the value of c is
 - (a) 44

- (b) 48 (c) -44 (d) -48
- **35.** If a b, a and a + b are zeroes of the polynomial $x^3 3x^2 + x + 1$, the value of (a+b) is
 - (a) $-1 + \sqrt{2}$ (b) $-1 \sqrt{2}$ (c) $1 \pm \sqrt{2}$

- 36. The condition to be satisfied by the coefficients of the polynomial $f(x) = x^3 - 2x^2 + qx - r$ when the sum of its two zeroes is zero, is
 - (a) 2r = q (b) 2q = r (c) q = r (d) 4q = r

- 37. For what value of k is the polynomial $p(x) = 2x^3 kx^2 + 5x + 9$ exactly divisible by x + 2?

- **38.** If α , β and γ are the zeroes of polynomials $kx^3 5x + 9$ and $\alpha^3 + \beta^3 + \gamma^3 = 27$, then
 - (a) k = -3 (b) k = 3 (c) k = 1 (d) k = -1

Chapter 3: Pair of Linear Equations in Two Variables

----- MULTIPLE-CHOICE QUESTIONS -----

For Basic and Standard Levels

Choose the correct answer from the given four options in the following questions:

1. If a pair of equations is consistent, then the lines will be

	(a) always intersecting.	(b) always coincident.	
	(c) intersecting or coincident.	(d) parallel.	
2.	The pair of equations $x = 4$ and $y = 3$	graphically represent lines w	hich are
	(a) coincident.	(b) parallel.	
	(c) intersecting at (3, 4).	(d) intersecting at (4, 3).	[CBSE 2012]
3.	One equation of a pair of dependent	linear equations is $-5x + 7y =$	2, the

- (a) 10x + 14y + 4 = 0(b) -10x - 14y + 4 = 0(c) -10x + 14y + 4 = 0(d) 10x - 14y = -4 [CBSE SP 2011]
- 4. The value of α for which the pair of equations $3x + \alpha y = 6$ and 6x + 8y = 7 will have infinitely many solutions is

 (a) 4 (b) no value
 - (c) 3 (d)
- 5. The points at which the graph lines of the equations ax + by = 0 and ax by = 0 intersect is

 (a) (a, 0)
 - (a) (a, 0)(b) (b, 0)(c) (0, 0)(d) (a, b)
- 6. The points of intersection of the graph line of $\frac{x}{a} + \frac{y}{b} 2 = 0$ with the *x*-axis and *y*-axis respectively are
 - (a) (0, -2a), (-2b, 0)(b) (-2a, 0), (0, -2b)(c) (0, 2a), (2b, 0)(d) (2a, 0), (0, 2b)
- 7. Which of the following is not a solution of the pair of equations 3x 2y = 4 and 6x 4y = 8?
 - (a) x = 2, y = 1(b) x = 4, y = 4(c) x = 6, y = 7(d) x = 5, y = 3 [CBSE SP 2011]

8.		-	uations $x - y = 2$, $x - y = 2$	+ y = 4, then the values
	of a and b are responded a	pectively	(h) 5 and 2	
	(a) 3 and 5(c) 3 and 1		(b) 5 and 3(d) −1 and −3	
		(. 1 .1 .1		1 0 0 1
9.		itisfying both the e	quations $4x - 5 = y$	and $2x - y = 3$, when
	y = -1 is (a) 1	(b) - 1	(c) 2	(d) - 2
10				
10.		whose y-coordinate		line represented by
	(a) 4	(b) 5	(c) 6	(d) 7
11		x + y - 40 = 0		
11.	(a) a unique solu		(b) exactly two so	
	(c) infinitely mar		(d) no solution	
12.		on of the equation (the value of k is
	(a) -4	(b) 4	(c) 3	(d) - 3
13.				$3kx + 6y = \sqrt{50} \text{ and}$
10.		75 have a unique s		one i og voo arra
		75 Have a uriique s	W2/3/ 12 H	
	(a) $k \neq -6$		$(b) k \neq 6$	
	(c) $k \neq \sqrt{3}$		(d) $k \neq -3$.	
14.	If the pair of equavalue of <i>k</i> is	ations $2x + 3y = 7$ an	$1d kx + \frac{9}{2}y = 12 hax$	e no solution, then the
	(a) $\frac{2}{3}$	(b) $\frac{3}{}$	(c) 3	(d) - 3
	3	2		
15.	If the pair of equ then	ations $8x + 2y = 5k$	and $4x + y = 3$ rep	resent coincident lines
	_	(b) $k = \frac{6}{5}$	(c) $k-5$	(d) k = 6
	(u) $\kappa = \frac{1}{6}$	$\frac{(b)}{5}$	(c) $\kappa = \frac{1}{6}$	(a) $k = \frac{1}{5}$
For	Standard Level			
16.	If $\frac{2}{x} + \frac{3}{y} = 13$ and	$\frac{5}{x} - \frac{4}{y} = -2$, then $x - \frac{1}{x} = -2$	+ y equals	[CBSE SP 2011]
	(a) $\frac{1}{6}$	(b) $\frac{-1}{6}$	(c) $\frac{5}{6}$	$(d) \frac{-5}{6}$
17.	If $bx + ay = a^2 + b$	2 and $ax - by = 0$, th	en the value of x –	y is
	(a) $a - b$		(b) $b-a$	
	(c) $a^2 - b^2$		$(d) b^2 + a^2$	
18.	If $\sqrt{ax} - \sqrt{by} = b - $	a and $\sqrt{b}x - \sqrt{a}y = 0$), then <i>xy</i> is equal t	O
	(a) $a + b$		(b) $a-b$	
	(c) \sqrt{ab}		(d) $-\sqrt{ab}$	

19. The pair of linear equations (3k + 1)x + 3y - 5 = 0 and 2x - 3y + 5 = 0 have infinite number of solutions. Then the value of *k* is

(a) 1

(b) 0

(c) 2 (d) -1 [CBSE SP 2011]

20. If the graph of the equations 3x + 4y = 12 and (m + n)x + 2(m - n)y = (5m - 1) is a coincident line, then

(a) m = -1, n = -5

(b) m = 1, n = 5

(c) m = 5, n = 1

(*d*) m = -5, n = -1

Chapter 4: Quadratic Equations

MULTIPLE-CHOICE QUESTIONS -

For Basic and Standard Levels

Choose the correct answer from the given four options in the following questions:

1. Which one of the following is a quadratic equation?

(a)
$$(a+1)x^2 - \frac{3}{5}x = 11$$
, where $a = -1$ (b) $(3-x)^2 - 5 = x^2 + 2x + 1$
(c) $8x^3 - x^2 = (2x-1)^3$ (d) $-3x^2 = (2-x)\left(3x - \frac{1}{2}\right)$

(c)
$$8x^3 - x^2 = (2x - 1)^3$$

(d)
$$-3x^2 = (2-x)\left(3x - \frac{1}{2}\right)$$

2. Which of the following equation has 3 as a root?

(a)
$$2x^2 - x - 6 = 0$$

(b)
$$2x^2 - 5x - 3 = 0$$

(c)
$$6x^2 - x - 2 = 0$$

(d)
$$8x^2 - 22x - 21 = 0$$

3. Which of the following is a solution of quadratic equation $x^2 - b^2 = a(2x - a)$?

(a)
$$a + b$$

(a)
$$a + b$$
 (b) $2b - a$ (c) ab

(d) $\frac{a}{b}$ [CBSE SP 2012]

4. The roots of the quadratic equation $2x^2 - x - 6 = 0$ are

(a)
$$-2$$
, $\frac{3}{2}$

(b) 2,
$$\frac{-3}{2}$$

(a)
$$-2$$
, $\frac{3}{2}$ (b) 2 , $\frac{-3}{2}$ (c) -2 , $\frac{-3}{2}$ (d) 2 , $\frac{3}{2}$

(d) 2,
$$\frac{3}{2}$$

[CBSE SP 2012]

5. The roots of the quadratic equation $x^2 - 3x - m(m + 3) = 0$, where m is a constant, are

(a)
$$m, m + 3$$

(b)
$$-m, m+3$$

(c)
$$m, -(m+3)$$

$$(d) - m, -(m+3)$$

[CBSE 2011]

6. If one root of the equation $2x^2 + kx - 6 = 0$ is 2, then the value of k + 1 is

$$(b) - 1$$
 $(c) 0$

$$(c)$$
 0

$$(d) - 2$$

7. The quadratic equation $2y^2 - \sqrt{3}y + 1 = 0$ has

- (a) more than two real roots
- (b) two equal real roots

(c) no real roots

(d) two distinct real roots

8. Which one of the following equations has two distinct roots?

(a)
$$x^2 + 2x - 7 = 0$$

$$(b) \quad 3y^2 - 3\sqrt{3}y + \frac{9}{4} = 0$$

(c)
$$x^2 + 2x + 2\sqrt{3} = 0$$

(d)
$$6x^2 - 3x + 1 = 0$$

9. Which one of the following equations has no real roots?

(a)
$$x^2 - 2x - 2\sqrt{3} = 0$$

$$(b) \quad x^2 - 4x + 4\sqrt{2} = 0$$

(c)
$$3x^2 + 4\sqrt{3}x + 3 = 0$$

(d)
$$x^2 + 4x - 2\sqrt{2} = 0$$

viali	lemanes - Class Tu			13
10.	$(x^2 + 2)^2 - x^2 = 0$ h	nas		
	(a) four real roots		(b) two real roots	
	(c) one real root		(d) no real roots	
11.	If the equation x^2	+4x + k = 0 has rea	al and distinct roots	, then
	(a) $k \leq 4$	(b) $k < 4$	(c) $k > 4$	(d) $k \ge 4$
12.	The quadratic equ	ation $49x^2 + 21x +$	$\frac{9}{4} = 0 \text{ has}$	
	(a) real and equal	roots	(b) four real roots	
	(c) real and uneq	ual roots	(d) no real roots	
13.	The positive value of will both have rea		$uations x^2 + kx + 64$	$x = 0$ and $x^2 - 8x + k = 0$
	(a) 8	(b) 4	(c) 12	(d) 16
14.	Value(s) of p for v	$which 2x^2 - px + p =$	0 has equal roots i	s/are
	(<i>a</i>) 0, 8	(b) 8 only	(c) 4 only	(<i>d</i>) 0 only
15.	If the equation 25	$x^2 - kx + 9 = 0 \text{ has } \epsilon$	equal roots, then	
	(a) $k = \pm 30$		(b) $k = \pm 25$	
	(c) $k = \pm 9$		(<i>d</i>) $k = \pm 34$	
16.	If the equation x^2	-4x + k = 0 has coi	ncident roots, then	
	(a) $k = -4$	(b) $k = 4$	(c) $k = 0$	(<i>d</i>) $k = -2$
17.	If the equation ax^2	$a^2 + bx + c = 0$ has eq	qual roots, then the	value of <i>c</i> is
	(a) $\frac{b^2}{4a}$	(b) $\frac{b}{2a}$	(c) $\frac{-b}{2a}$	$(d) \frac{-b^2}{4a}$
18.	If the quadratic ed m are	quation $mx^2 + 2x +$	m = 0 has equal ro	ots then the values of
	$(a) \pm 1$	(<i>b</i>) 0, 2	(c) 0, 1	(d) - 1, 0 [CBSE 2012]
19.	If one root of $4x^2$	-2x + (k-4) = 0 be	the reciprocal of th	e other, then
	(a) $k = -8$	(b) $k = 8$	(c) $k = 4$	(<i>d</i>) $k = -4$
20.	Which of the follo	wing has the sum	of its roots as 3?	
	$(a) \ x^2 + 3x - 5 = 0$		$(b) - x^2 + 3x + 3 =$	0
	(c) $\sqrt{2}x^2 - \frac{3}{\sqrt{2}}x$	-1 = 0	$(d) \ 3x^2 - 3x - 3 = 0$	[CBSE SP 2011]
21.	If 1 is a root of the	e equations $ay^2 + ay$	$y + 3 = 0$ and $y^2 + y$	+ b = 0, then ab equals
	(a) 3	(b) $\frac{-7}{2}$	(c) 6	(d) - 3 [CBSE SP 2012]
22.	If $x = 1$ is a commoto	on root of $ax^2 + ax +$	$2 = 0$ and $x^2 + x + b$	p = 0, then $a : b$ is equal
		(b) 2:1	(c) 1:4	(d) 4:1
23.		px + 3 = 0 is 1, then		
	(a) $p = -3$	(b) $p = 3$	(c) $p = -4$	(d) $p = 4$
	•	•		ē.

- **24.** The condition so that the roots of the quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$, may be equal in magnitude but opposite in sign, is
 - (a) a = -1 (b) c = 0 (c) a = 0 (d) b = 0

- **25.** If 2 is a root of the quadratic equation $x^2 + ax + 12 = 0$ and the quadratic equation $x^2 + ax + q = 0$ has equal roots then
 - (a) q = 12 (b) q = 8 (c) q = 20 (d) q = 16

- 26. Which constant must be added and subtracted to solve the quadratic equation $a^2x^2 - 3abx + 2b^2 = 0$ by the method of completing the square?

 - (a) $\frac{4b^2}{9a^2}$ (b) $\frac{4a^2}{3b^2}$ (c) $\frac{9b^2}{4a^2}$
- 27. If x = -2 and $x = \frac{3}{4}$ are solutions of the equation $px^2 + qx 6 = 0$, then the values of p and q are respectively

 - (a) 1, 6 (b) 5, 4 (c) 4, 5
- (d) 6, 1

For Standard Level

- 28. The ratio of sum and products of the roots of the equation $3x^2 + 12 13x = 0$ is
 - (a) 12:13 (b) 13:12 (c) 6:7 (d) 7:6

- **29.** If the sum of the roots of the quadratic equation $kx^2 + 6x + 4k = 0$ is equal to the product of its roots, then
 - (a) $k = \frac{-3}{2}$ (b) $k = \frac{3}{2}$ (c) $k = \frac{2}{3}$

- **30.** If one root of $3x^2 = 8x + (2k + 1)$ is seven times the other, then the roots are
- (a) -3, $-\frac{3}{7}$ (b) $\frac{1}{3}$, $\frac{7}{3}$ (c) $-\frac{1}{3}$, $-\frac{7}{3}$ (d) 3, $\frac{3}{7}$
- **31.** A quadratic equation whose one root is $1 + \sqrt{2}$ and the sum of its roots is 2, is
 - (a) $x^2 2x + 1 = 0$ (b) $x^2 2x 1 = 0$ (c) $x^2 + 2x + 1 = 0$ (d) $x^2 + 2x 1 = 0$
- 32. A quadratic equation with rational coefficients and one root as $4 + \sqrt{3}$ is
 - (a) $x^2 + 8x + 13 = 0$
- (b) $x^2 8x + 13 = 0$
- (c) $x^2 + 8x 13 = 0$ (d) $x^2 8x 13 = 0$
- **33.** If $(a^2 + b^2)x^2 + 2(ac + bd)x + (c^2 + d^2) = 0$ has no real roots, then
 - (a) ad = bc (b) ab = cd (c) ac = bd (d) $ad \neq bc$

- **34.** If the roots of the equation $x^2 2x(1 + 3k) + 7(3 + 2k) = 0$ are real and equal, then

- (a) k = 2, $\frac{-10}{9}$ (b) k = -2, $\frac{10}{9}$ (c) k = 9, $\frac{1}{10}$ (d) k = -9, $\frac{-1}{10}$
- **35.** If one root of the quadratic equation $ax^2 + bx + c = 0$ is three times the other, then

- (a) $b^2 = 16ac$ (b) $b^2 = 3ac$ (c) $3b^2 = 16ac$ (d) $16b^2 = 3ac$

36. If $\sin \alpha$ and $\cos \alpha$ are the roots of the equation $ax^2 + bx + c = 0$, then

(a)
$$a^2 - 2ac = b^2$$
 (b) $a^2 + 2ac = b^2$ (c) $a^2 - ac = b^2$ (d) $a^2 + ac = b^2$

(b)
$$a^2 + 2ac = b^2$$

(c)
$$a^2 - ac = b^2$$

(d)
$$a^2 + ac = b^2$$

37. If one root of the equation $4x^2 - 8kx - 9 = 0$ is negative of the other, then

(a)
$$k = 9$$
 (b) $k = 0$ (c) $k = 8$ (d) $k = 4$

(b)
$$k = 0$$

(c)
$$k = 8$$

$$(d)$$
 $k=4$

38. Quadratic equation whose roots are $\frac{2+\sqrt{5}}{2}$, $\frac{2-\sqrt{5}}{2}$ is

(a)
$$8x^2 - 4x - 1 = 0$$

(b)
$$4x^2 + 8x + 1 = 0$$

(c)
$$4x^2 + 8x - 1 = 0$$

(d)
$$4x^2 - 8x - 1 = 0$$

39. If the sum of the roots of the equation $x^2 - (k + 6)x + 2(2k - 1) = 0$ is equal to half their product, then

(a)
$$k = 6$$

(b)
$$k = 7$$

(c)
$$k = 1$$

(a)
$$k = 6$$
 (b) $k = 7$ (c) $k = 1$ (d) $k = 5$

40. Quadratic equation whose roots are the reciprocal of the roots of the equation $ax^2 + bx + c = 0$ is

(a)
$$ax^2 + cx + b = 0$$

(b)
$$cx^2 + bx + a = 0$$

(c)
$$cx^2 - bx + a = 0$$

(d)
$$cx^2 + bx - a = 0$$

41. Which constant must be added and subtracted to solve the quadratic equation $5x^2 - 6x - 2 = 0$ by the method of completing the square?

(a)
$$\frac{3}{5}$$

(b)
$$\frac{36}{25}$$

(a)
$$\frac{3}{5}$$
 (b) $\frac{36}{25}$ (c) $\frac{25}{36}$

$$(d) \frac{9}{25}$$

42. If two numbers *m* and *n* are such that the quadratic equation $mx^2 + 3x + 2n = 0$ has – 6 as the sum of the roots and also as the product of roots then

(a)
$$m = \frac{1}{2}$$
, $n = \frac{-3}{2}$

(b)
$$m = \frac{-3}{2}$$
, $n = \frac{1}{2}$

(c)
$$m = \frac{2}{3}$$
, $n = \frac{-1}{2}$

(d)
$$m = \frac{-2}{3}, n = \frac{3}{2}$$

43. The value of *y* which satisfies the equation $1 + \frac{y^2}{13} = \sqrt{\frac{27}{169} + 1}$ is

$$(a) \pm 2$$

$$(b) \pm 1$$

$$(c) \pm 3$$

$$(d) \pm 4$$

44. If $x = \sqrt{6 + \sqrt{6 + \sqrt{6 \dots}}}$, then the value of *x* is

- (a) 1
- (b) 2
- (c) 3
- (d) 4

Chapter 5: Arithmetic Progressions

	MULTIPLE-CI	HOICE QUESTION	NS
For Basic and St	andard Levels		
Choose the correct	t answer from the g	iven four options ir	the following questions:
1. The next term	of the AP: $\sqrt{18}$, $\sqrt{5}$	$\overline{0}$, $\sqrt{98}$ is	
(a) $\sqrt{146}$	(b) $\sqrt{128}$	(c) $\sqrt{162}$	(d) $\sqrt{200}$
			[CBSE SP 2012
2. The tenth term	n of the AP: -1.0, -1	.5, -2.0, is	
(a) 3.5	(<i>b</i>) – 5.5	(c) 5.5	(d) - 6.5 [CBSE SP 2012
3. The <i>n</i> th term	of the AP: 7, 4, 1, – 2	2, is	
(a) $3 + 10n$	(b) $3 - 10n$	(c) $10 + 3n$	(d) $10 - 3n$
4. The 11th term	of the AP: $-5, -\frac{5}{2}$, 0, $\frac{5}{2}$, is	
(a) - 20	(b) 30	(c) 20	(d) - 30
5. The 11th term	of the sequence de	fined by $a_n = (-1)^n$	$-1 n^3$ is
(a) 1220	(b) 1221	(c) 1331	(d) 1330
6. The 12th term	of an AP whose fir	st two terms are – 3	3 and 4 is
(a) 67	(b) 74	(c) 60	(d) 81
7. If the first tern will be	n of an AP is – 7 and	its common differe	nce is 5, then its 18th term
(a) 64	(b) 71	(c) 78	(d) 85
8. In an AP if <i>d</i> =	$=-\frac{1}{4}$, $n=31$, $a_n=\frac{1}{4}$	$\frac{1}{2}$ then a is	
(a) 6	(b) 8	(c) 10	(d) 12
9. In an AP if <i>a</i> =	= -2.5, $d = 0$, $n = 10$	7 then a_n will be	
(a) - 3.5	(b) - 2.5	(c) 2.5	(d) 1.5
10. The 7th term	from the end of the	AP: 7, 11, 15,, 10	07 is
(a) 79	(b) 83	(c) 81	(d) 87

11. If the common difference of an AP is 5, then $a_{15} - a_{11}$ is equal to

12. If $a_{20} - a_{12} = -32$, then the common difference of the AP is

(a) 4 (b) -4 (c) -3

(a) 12 (b) 15 (c) 4 (d) 20

Scanned with CamScanner

(*d*) 3

13.	The list of number	ers - 5, -1, 3, 7 is		
	(a) an AP with d	= -4	(<i>b</i>) an AP with <i>d</i> :	= 2
	(c) an AP with d	= 4	(d) not an AP	
14.	The first four term	ns of an AP, whose i	first term is 0.3 and	the common difference
	is 0.25, are			
	(a) 0.3, 0.8, 1.3, 1.	8	(b) 0.3, 0.55, 0.80,	1.05
	(c) 0.3, 1.05, 1.80,	2.55	(d) 0.3, 0.5, 0.7, 0.9	9
15.	The number of ds	added to the first t	term of an AP to ge	et its 29th term is
	(a) 29	(<i>b</i>) 28	(c) 27	(d) 30
16.	How many terms	are there in the AI	P: 3, 6, 9, 12,, 111	1?
	(a) 35	(b) 36	(c) 38	(d) 37
17.	If $x = 1000$ is the λ	kth term of the AP:	25, 50, 75, 100 th	nen
	(a) $k = 40$	(b) $k = 25$	(c) $k = 39$	(<i>d</i>) $k = 50$
18.	If $a = 5$, $l = 45$ and	$S_n = 400$ then <i>n</i> is	equal to	
	(a) 15	(b) 80	(c) 50	(d) 16
19.	The fourth term of	of an AP is equal to	3 times its first terr	m and its seventh term
	exceeds twice the	third term by 1. Th	nen, the first term is	5
	(a) 2	(<i>b</i>) 3	(c) 4	(d) 1
20.	The common diff	erence of the AP $\frac{1}{p}$	$\frac{1-p}{1-p}$, $\frac{1-2p}{1-2p}$, is	
		p	p p	
	(a) p	(b) - p	(c) - 1	(d) 1 [CBSE SP 2013]
21.	How many terms	of two digits are d	ivisible by 3?	
	(a) 29	(b) 31	(c) 30	(d) 28
22.				
	The <i>n</i> th term of a	n AP whose sum o	f n terms is S_n , is	
		n AP whose sum of (b) $S_n - S_{n-1}$	11	$(d) S_n - S_{n+1}$
	(a) $S_n + S_{n+1}$	(b) $S_n - S_{n-1}$	$(c) S_n + S_{n-1}$	
	(a) $S_n + S_{n+1}$	(b) $S_n - S_{n-1}$	(c) $S_n + S_{n-1}$ whose <i>n</i> th term is given	(d) $S_n - S_{n+1}$ ven by $a_n = \frac{4n+1}{2}$, are
	(a) $S_n + S_{n+1}$ The first four term	(b) $S_n - S_{n-1}$	(c) $S_n + S_{n-1}$ whose <i>n</i> th term is given	
23.	(a) $S_n + S_{n+1}$ The first four term (a) $1, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}$	(b) $S_n - S_{n-1}$	(c) $S_n + S_{n-1}$ whose <i>n</i> th term is given $(b) \frac{5}{2}, \frac{9}{2}, \frac{13}{2}, \frac{17}{2}$	
23.	(a) $S_n + S_{n+1}$ The first four term	(b) $S_n - S_{n-1}$	(c) $S_n + S_{n-1}$ whose <i>n</i> th term is given	
23.	(a) $S_n + S_{n+1}$ The first four term (a) $1, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}$ (c) $\frac{1}{2}, 2, 3, 5$	(b) $S_n - S_{n-1}$ as of the sequence where	(c) $S_n + S_{n-1}$ whose <i>n</i> th term is given $(b) \frac{5}{2}, \frac{9}{2}, \frac{13}{2}, \frac{17}{2}$ (d) $\frac{3}{2}, \frac{7}{2}, \frac{11}{2}, \frac{15}{2}$	$\operatorname{ven} \operatorname{by} a_n = \frac{4n+1}{2}, \operatorname{are}$
23.	(a) $S_n + S_{n+1}$ The first four term (a) $1, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}$ (c) $\frac{1}{2}, 2, 3, 5$ If the <i>n</i> th term of	(b) $S_n - S_{n-1}$ an AP is $6n + 2$, the	(c) $S_n + S_{n-1}$ whose <i>n</i> th term is given $(b) \frac{5}{2}, \frac{9}{2}, \frac{13}{2}, \frac{17}{2}$ (d) $\frac{3}{2}, \frac{7}{2}, \frac{11}{2}, \frac{15}{2}$ en its common difference of the com	erence is
24.	(a) $S_n + S_{n+1}$ The first four term (a) $1, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}$ (c) $\frac{1}{2}, 2, 3, 5$ If the <i>n</i> th term of (a) 4	(b) $S_n - S_{n-1}$ as of the sequence where $S_n - S_n = 1$ an AP is $S_n - S_n = 1$	(c) $S_n + S_{n-1}$ whose <i>n</i> th term is given by $\frac{5}{2}$, $\frac{9}{2}$, $\frac{13}{2}$, $\frac{17}{2}$ (d) $\frac{3}{2}$, $\frac{7}{2}$, $\frac{11}{2}$, $\frac{15}{2}$ en its common difference (c) 6	ven by $a_n = \frac{4n+1}{2}$, are erence is (d) 8
24.	(a) $S_n + S_{n+1}$ The first four term (a) $1, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}$ (c) $\frac{1}{2}, 2, 3, 5$ If the <i>n</i> th term of (a) 4 If $k, 2k - 1$ and $2k$	(b) $S_n - S_{n-1}$ as of the sequence where $an AP is 6n + 2$, the $(b) 2$ + 1 are three consecutive.	whose <i>n</i> th term is given by $\frac{5}{2}$, $\frac{9}{2}$, $\frac{13}{2}$, $\frac{17}{2}$ and $\frac{3}{2}$, $\frac{7}{2}$, $\frac{11}{2}$, $\frac{15}{2}$ and its common different control of an equation $\frac{7}{2}$.	even by $a_n = \frac{4n+1}{2}$, are evence is (d) 8 AP, the value of k is
24.	(a) $S_n + S_{n+1}$ The first four term (a) $1, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}$ (c) $\frac{1}{2}, 2, 3, 5$ If the <i>n</i> th term of (a) 4 If $k, 2k - 1$ and $2k$ (a) 2	(b) $S_n - S_{n-1}$ as of the sequence where $an AP$ is $6n + 2$, the (b) 2 + 1 are three consecutive (b) 3	whose n th term is given by $\frac{5}{2}$, $\frac{9}{2}$, $\frac{13}{2}$, $\frac{17}{2}$ and $\frac{3}{2}$, $\frac{7}{2}$, $\frac{11}{2}$, $\frac{15}{2}$ are its common different $\frac{6}{2}$ and $\frac{6}{2}$ are the cutive terms of an $\frac{7}{2}$ are $\frac{11}{2}$ and $\frac{15}{2}$ are $\frac{11}{2}$ and $\frac{15}{2}$ are $\frac{11}{2}$ and $\frac{15}{2}$ are $\frac{15}{2}$ are $\frac{15}{2}$ are $\frac{15}{2}$ and $\frac{15}{2}$ are $\frac{15}{2}$ are $\frac{15}{2}$ and $\frac{15}{2}$ are $\frac{15}{2}$ are $\frac{15}{2}$ and $\frac{15}{2}$ are $\frac{15}{2}$ are $\frac{15}{2}$ are $\frac{15}{2}$ and $\frac{15}{2}$ are $\frac{15}{2}$ and $\frac{15}{2}$ are $\frac{15}{2}$ are $\frac{15}{2}$ and $\frac{15}{2}$ are $\frac{15}{2}$ and $\frac{15}{2}$ are $\frac{15}{2}$ are $\frac{15}{2}$ are $\frac{15}{2}$ are $\frac{15}{2}$ are $\frac{15}{2}$ are $\frac{15}{2}$ and $\frac{15}{2}$ are \frac	even by $a_n = \frac{4n+1}{2}$, are evence is (d) 8 AP, the value of k is
24.	(a) $S_n + S_{n+1}$ The first four term (a) $1, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}$ (c) $\frac{1}{2}, 2, 3, 5$ If the <i>n</i> th term of (a) 4 If $k, 2k - 1$ and $2k$ (a) 2 If $a = -2, d = 0$, the	(b) $S_n - S_{n-1}$ an AP is $6n + 2$, the (b) 2 + 1 are three consection (b) 3 Then the first four terms of the sequence with the seq	whose <i>n</i> th term is given by $\frac{5}{2}$, $\frac{9}{2}$, $\frac{13}{2}$, $\frac{17}{2}$ and $\frac{3}{2}$, $\frac{7}{2}$, $\frac{11}{2}$, $\frac{15}{2}$ are its common different common different control of the $\frac{1}{2}$ and $\frac{1}{2}$ are of the AP are	erence is $(d) 8$ AP, the value of k is $(d) 5 [CBSE 2014]$
24.	(a) $S_n + S_{n+1}$ The first four term (a) $1, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}$ (c) $\frac{1}{2}, 2, 3, 5$ If the <i>n</i> th term of (a) 4 If $k, 2k - 1$ and $2k$ (a) 2 If $a = -2, d = 0$, the (a) $-2, -4, -6, -$	(b) $S_n - S_{n-1}$ an AP is $6n + 2$, the (b) 2 + 1 are three consection (b) 3 Then the first four terms of the sequence with the seq	(c) $S_n + S_{n-1}$ whose <i>n</i> th term is given by $\frac{5}{2}$, $\frac{9}{2}$, $\frac{13}{2}$, $\frac{17}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, and its common different common different control of the cutive terms of an (c) -3 are (b) -2 , $-$	erence is $(d) 8$ AP, the value of k is $(d) 5 [CBSE 2014]$
24.	(a) $S_n + S_{n+1}$ The first four term (a) $1, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}$ (c) $\frac{1}{2}, 2, 3, 5$ If the <i>n</i> th term of (a) 4 If $k, 2k - 1$ and $2k$ (a) 2 If $a = -2, d = 0$, the	(b) $S_n - S_{n-1}$ an AP is $6n + 2$, the (b) 2 + 1 are three consection (b) 3 Then the first four terms of the sequence with the seq	whose <i>n</i> th term is given by $\frac{5}{2}$, $\frac{9}{2}$, $\frac{13}{2}$, $\frac{17}{2}$ and $\frac{3}{2}$, $\frac{7}{2}$, $\frac{11}{2}$, $\frac{15}{2}$ are its common different common different control of the $\frac{1}{2}$ and $\frac{1}{2}$ are of the AP are	erence is $(d) 8$ AP, the value of k is $(d) 5 [CBSE 2014]$

27.	The famous mathenumbers is	ematician associate	d with finding the s	sum of first 100 natural
	(a) Euclid		(b) Newton	
	(c) Gauss		(d) Pythagoras	
28.	If 5 times the 5th term will be	term of an AP is eq	` ' ' '	10th term, then its 15th
	(a) 11	(b) 7	(c) 0	(d) 18
29.	Which term of the	e progression 19,18	$3\frac{1}{5}$, $17\frac{2}{5}$, is the factor of $\frac{1}{5}$	irst negative term?
	(a) 24th term	(b) 26th term	(c) 25th term	(d) 23rd term
30.	If the 7th term of	an AP is 32 and its	13th term is 62, the	en the AP is
	(a) 62, 67, 72,		(b) 2, 7, 12,	
	(c) 32, 37, 42,		(d) 1, 6, 11,	
31.	Which term of the	e AP: 3, 10, 17, w	ill be 84 more than	its 13th term?
	(a) 24th term		(b) 23rd term	
	(c) 25th term		(<i>d</i>) 27th term	
32.	The sum of first fi	ive terms of the AP	: 3, 7, 11, 15, is	
	(a) 44	(b) 55	(c) 22	(d) 11
33.	If the first term of first 26 terms is	an AP is 1 and the	common difference	e is 2, then the sum of
	(a) 484	(b) 576	(c) 676	(d) 625
34.	If the last term of	an AP is 119 and	the 8th term from	the end is 91, then the
	common difference	ce of the AP is		
	(a) - 3	(b) 4	(c) 3	(d) 2
35.	If the sum to <i>n</i> ten	rms of an AP is 3n ²	+4n, then the con	nmon difference of the
	(a) 7	(<i>b</i>) 5	(c) 8	(d) 6
36.	If a_p be the p th ter	m of AP: 3, 15, 27,	and $a_p - a_{50} = 18$	0, then
	•	(b) $p = 65$	•	
37.	If the 19th term of common difference	of an AP exceeds t	the 12th term of th	he AP by $\frac{7}{4}$, then the
	_	4	(a) 3	(d) 5
	$(u) \overline{4}$	(b) $\frac{1}{4}$	$\frac{(c)}{4}$	$(u) \overline{4}$
38.		., a_n if $a_1 = 21$, $a_2 =$		
	17 D	(b) $n = 19$	15 J.333	45 45
39.	The <i>n</i> th term of a	n AP whose sum is	given by $S_n = \frac{5n^2}{2}$	$+\frac{3n}{2}$, will be
				(d) $5n - 1$

40.	. The sum of 4th and 8th terms of an AP is 24 and the sum of 6th and the 10th term is 44, then the 3rd term is						
		(b) 3	(c) -2	(d) 2			
For	Standard Level						
		1.	CC	C .1 .			
41.	and the same and t	e same common di other is 3. The differ		erm of one of these is 30th terms is			
	(a) 11	(b) 3	(c) 8	(<i>d</i>) 5			
42.	The expression fo <i>n</i> th term is <i>b</i> is	r the common diffe	erence of an AP wh	ose first term is a and			
		$(b) \frac{b+a}{n-1}$	$(c) \frac{b-a}{n-1}$	$(d) \frac{b+a}{n+1}$			
43.	The sum of first 2	1 terms of the AP w	whose 2nd term is 8	and 4th term is 14 is			
	(a) 855	(b) 735	(c) 1035	(d) 925			
44.	If four numbers a	re in AP such that	their sum is 32 an	d the least number is			
	one-seventh the g	reatest number, the	n the numbers are				
	(a) 1, 3, 5, 7	(<i>b</i>) 6, 18, 30, 42	(c) 4, 12, 20, 28	(<i>d</i>) 2, 6, 10, 14			
45.	If $4k + 8$, $2k^2 + 3k + 8$	$+6$ and $3k^2 + 4k + 4i$	are three consecutiv	e terms of an AP then			
	(a) $k = 2, 1$	(b) $k = 0, 2$	(c) $k = 0, 1$	(d) $k = 1, 2$			
46.	The 25th term of	an AP whose 9th to	erm is – 6 and the	common difference is			
	$\frac{5}{4}$ is						
	(a) 16	(b) - 16	(c) 30	(d) 14			
47.	The first, second and last term of an AP are respectively 4, 7 and 31. How many terms are there in the given AP?						
	(a) 12	(b) 10	(c) 13	(d) 9			
48.	If the ratio of 18th 21st term to the 5th		erm of an AP is 3:	2, then the ratio of the			
	(a) 3:2	(b) 3:1	(c) 1:3	(d) 2:3			
49.	The sum of n term	ns of the series $\sqrt{3}$ -	$+\sqrt{12}+\sqrt{27}+\sqrt{48}-$	+ is			
	$(a) \frac{2n(n+1)}{\sqrt{3}}$	$(b) \frac{\sqrt{3}n(n-1)}{2}$	$(c) \frac{\sqrt{3}n\left(n+1\right)}{2}$	$(d) \ \frac{2n(n-1)}{\sqrt{3}}$			
50.		consecutive terms of these term		is 21 and the product ird term is			
	(a) 5	(b) 9	(c) 4	(d) 2			
51.	If the <i>n</i> th term of	an AP is $(2n + 1)$, th	nen the sum of first	<i>n</i> terms of the AP is			
		(b) $n(n + 2)$					

52. The sum of all two digit odd positive numbers is

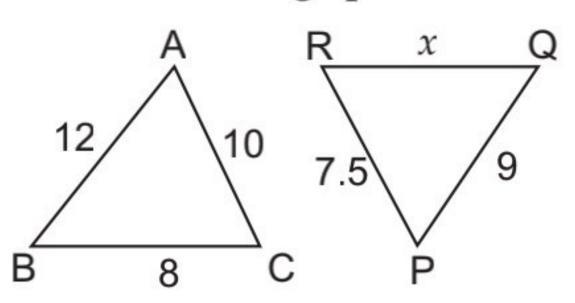
(a) 2275

(b) 2450

(c) 2250

(d) 2475

53.	The sum of all tw	o digit positive nur	nbers divisible by 3	s is				
	(a) 1560	(b) 1665	(c) 1656	(d) 1655				
54.	The sum of first 5	1 terms of the AP w	whose 2nd term is 2	and 4th term is 8, is				
	(a) 4374	(b) 3774	(c) 3477	(d) 3747				
55.	$\left(3-\frac{1}{n}\right)+\left(3-\frac{2}{n}\right)+\left(3-\frac{3}{n}\right)+\dots$ up to <i>n</i> is							
	2	$(b) \frac{3n+1}{2}$	(c) $\frac{5n-1}{2}$	$(d) \frac{5n+1}{2}$				
56.	-5 + (-8) + (-11)		() 000 5	(1) 00.10				
		(b) - 8925	` '	(a) - 8940				
		AP is $3n^2 - n$, then it		(1) 0				
		(b) 4	(c) 2	(d) 0				
58.	If the sum of first <i>n</i>		AP is 49 and that o	f 17 terms is 289, then				
	(a) $\frac{n+1}{2}$	(b) $\frac{n(n+1)}{2}$	(c) 2n	(d) n^2				
59.	If 5 + 7 + 9 + +	x = 320, then x is ea	qual to					
	(a) 33	(b) 35	(c) 37	(d) 39				
60.	If each term of an	AP is increased by c	onstant k then the n	th term of the resulting				
	AP is							
	(a) (a+k)+nd		(b) $(a + k + 1) + nd$!				
	(c) $(a + k - 1) + nc$	d	(d) (a + k) + (n - 1)	d				
61.		nine terms of an A	AP is 171 and that o	of first 24 terms is 996,				
	then the AP is		(1) 0 10 10					
	(a) 7, 10, 13		(b) 8, 10, 12					
	(c) 9, 11, 13		(<i>d</i>) 10, 15, 20					
	_	24 terms of the	sequence whose 1	th term is given by				
	$a_n = 3 + \frac{2}{3}n$ is							
	(a) 384	(b) 382	(c) 272	(d) 270				
63.	Four numbers are	in AP. If their sum	is 20 and the sum	of their squares is 120,				
	then, the numbers	s are						
	(a) - 10, 0, 10, 20		(<i>b</i>) 1, 3, 5, 7					
	(c) 2, 4, 6, 8		(d) -1, 3, 7, 11					
64.	The number of ter	rms of the AP: 63, 6	0, 57, so that the	sum is 693 is				
	(a) 21, 22	(b) 23	(c) 20	(d) 24				
65.			t their product is 3	336 and the sum is 21,				
	then the numbers	are	(1) 0 7 10					
	(a) 4, 7, 10		(b) 2, 7, 12 (d) 5, 7, 0					
	(c) 6, 7, 8		(<i>d</i>) 5, 7, 9					


Chapter 6: Triangles

MULTIPLE-CHOICE QUESTIONS

For Basic and Standard Levels

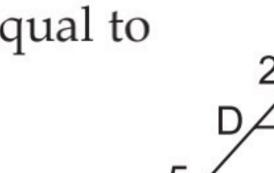
Choose the correct answer from the given four options in the following questions:

- **1.** If $\triangle ABC \sim \triangle PQR$, then x is equal to
- (c)

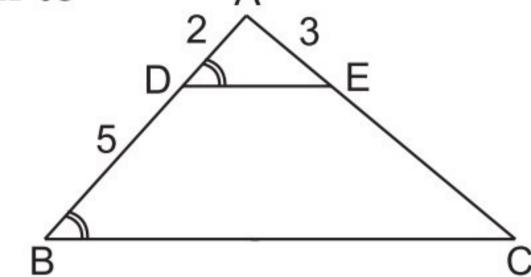
- 2. If $\triangle PQR \sim \triangle XYZ$, $\angle Q = 50^{\circ}$ and $\angle R = 70^{\circ}$, then $\angle X + \angle Y$ is equal to
 - (a) 70°

(b) 110°

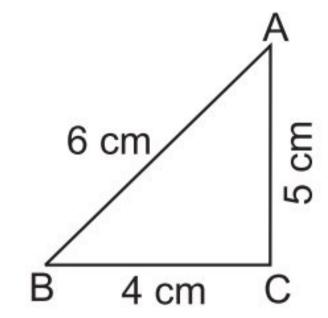
(c) 120°

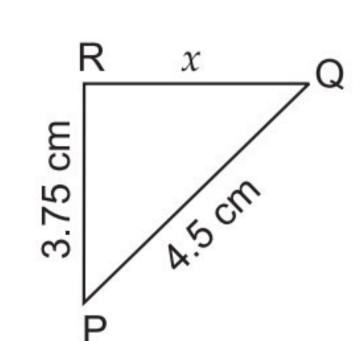

(d) 50°

- [CBSE 2011]
- 3. If in $\triangle ABC$ and $\triangle DEF$, $\frac{AB}{DE} = \frac{BC}{FD}$, then they will be similar, when
 - (a) $\angle A = \angle F$


(b) $\angle A = \angle D$

(c) $\angle B = \angle D$


- $(d) \angle B = \angle E$
- [CBSE SP 2011]
- **4.** It is given that $\triangle ABC \sim \triangle DFE$, $\angle A = 30^{\circ}$, $\angle C = 40^{\circ}$, AB = 5 cm, AC = 8 cm and DF = 7.5 cm. Then, the following is true.
 - (a) $\angle F = 40^{\circ}$, DE = 12 cm
 - (b) $\angle F = 110^{\circ}$, DE = 12 cm
 - (c) $\angle D = 30^{\circ}$, EF = 12 cm
 - (d) $\angle D = 110^{\circ}$, EF = 12 cm
- **5.** In the given figure, if $\angle ADE = \angle ABC$ then CE is equal to



- (a) 10 cm
- (b) 7 cm
- (c) 7.5 cm
- (d) 10.5 cm

- **6.** \triangle ABC ~ \triangle PQR. The value of x is
 - (a) 2.5 cm
 - (*b*) 3 cm
 - (c) 2.75 cm
 - (d) 3.5 cm

2 cm

3 cm

4 cm

В

- 7. In the given figure DE \parallel BC, then x equals
 - (a) 6 cm
 - (b) 8 cm
 - (c) 12 cm
 - (d) 10 cm

[CBSE SP 2011]

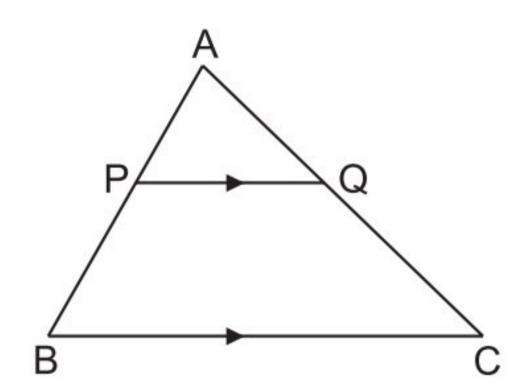
8. In the adjoining figure, P and Q are points on the sides AB and AC respectively of Δ ABC such that AP = 3.5 cm, PB = 7 cm, AQ = 3 cm, QC = 6 cm and PQ = 4.5 cm.The measure of BC is equal to

(b) 9 cm

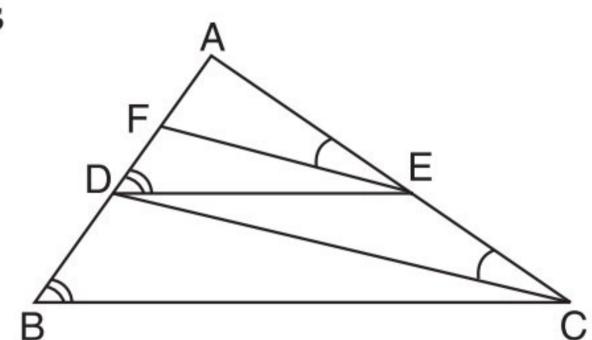
(*d*) 15 cm

[CBSE 2008]

9. In the given figure, AD : DB = 1 : 3, AE : EC = 1 : 3and BF : FC = 1 : 4, then



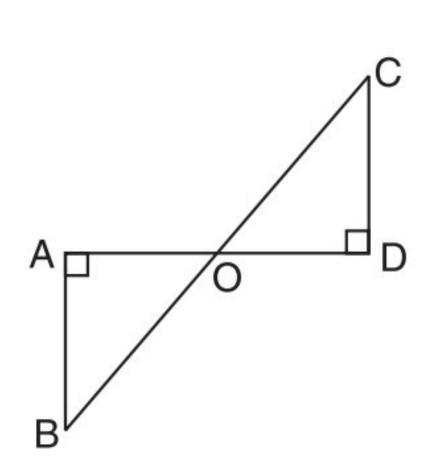
10. In the given figure, PQ || BC. If $\frac{AP}{PB} = \frac{AQ}{OC} = \frac{1}{2}$, then


(a)
$$PQ = BC$$
 (b) $PQ^2 = BC^2$

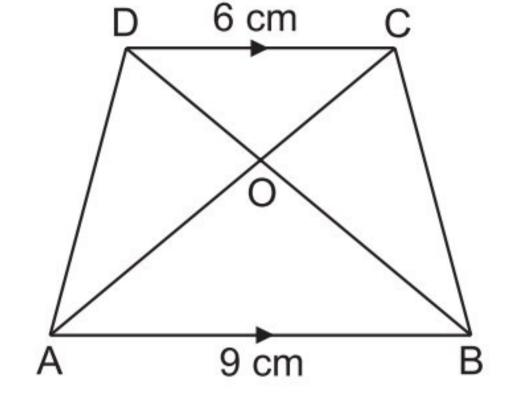
(c)
$$PQ = \frac{BC}{3}$$
 (d) $PQ = \frac{BC}{2}$

11. In the given figure, $\angle ADC = \angle ABC$, $\angle AEF = \angle ACD$, AF = 1 unit, AE = 4 units and EC = 8 units, then AF : DB equals

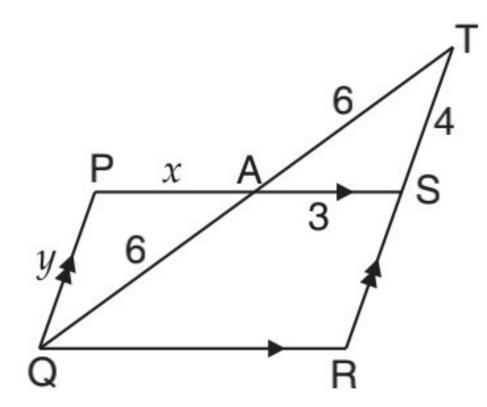
(a)
$$1:3$$

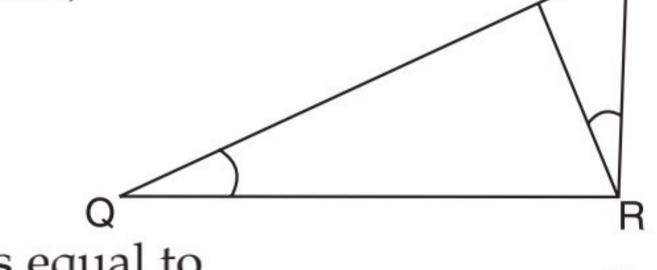

12. In the given figure, $\triangle ABO \sim \triangle DCO$. If CD = 2 cm, AB = 3 cm, OC = 3.2 cm, OD = 2.4 cm, then

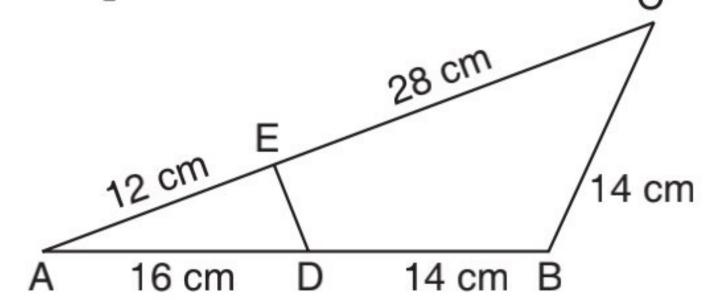
(a)
$$OA = 3 \text{ cm}, OB = 4 \text{ cm}$$

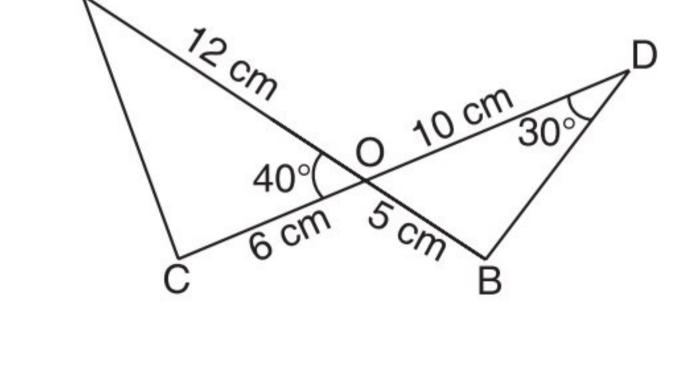

(b)
$$OA = 3.2 \text{ cm}$$
, $OB = 4.6 \text{ cm}$

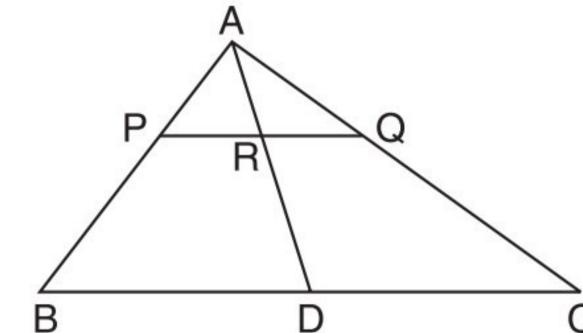
(c)
$$OA = 4.3 \text{ cm}$$
, $OB = 3.5 \text{ cm}$


(d) OA = 3.6 cm, OB = 4.8 cm

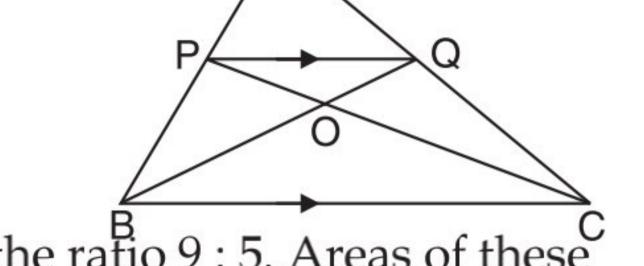

- 13. In trapezium ABCD, if AB \parallel DC, AB = 9 cm, DC = 6 cm and BD = 12 cm, then BO is equal to
 - (a) 7.4 cm
 - (b) 7 cm
 - (c) 7.2 cm
 - (*d*) 7.5 cm


- **14.** In the given figure, if AT = AQ = 6, AS = 3, TS = 4, then
 - (a) x = 4, y = 5
 - (b) x = 2, y = 3
 - (c) x = 1, y = 2
 - (d) x = 3, y = 4


- **15.** In the adjoining figure, $\angle PQR = \angle PRS$. If PR = 8 cm, PS = 4 cm, then PQ is equal to
 - (a) 12 cm
- (b) 16 cm
- (c) 32 cm
- (d) 24 cm


- **16.** In the given figure, if $\triangle AED \sim \triangle ABC$, then DE is equal to
 - (a) 5.5 cm
 - (*b*) 6.5 cm
 - (c) 7.5 cm
 - (d) 5.6 cm

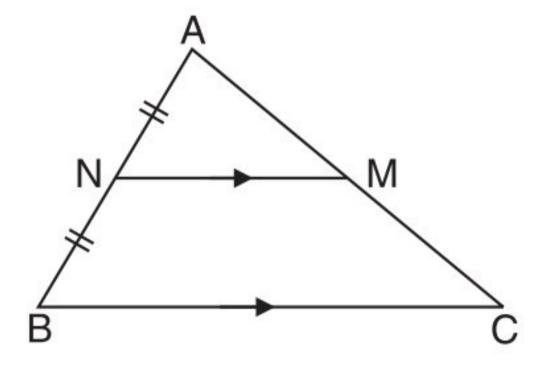
- 17. In the given figure, two line segments AB and CD intersect each other at the point O such that OA = 12 cm, OD = 10 cm, OB = 5 cm, OC = 6 cm, \angle AOC = 40° and \angle BDO = 30°. Then, ∠OCA is equal to
 - (a) 120°
- (b) 100°
- (c) 90°
- (d) 110°



- 18. In the given figure, if AP = 3 cm, AR = 4.5 cm, AQ = 6 cm, AB = 5 cm and AC = 10 cm, then AD is equal to
 - (a) 5.7 cm
 - (b) 7.6 cm
 - (c) 5.5 cm
 - (*d*) 7.5 cm

- 19. $\triangle PQR \sim \triangle XYZ$. If XY = 4 cm, YZ = 4.5 cm and ZX = 6.5 cm, PQ = 8 cm, then perimeter of ΔPQR is
 - (a) 25 cm (b) 23 cm (c) 15 cm
- (d) 30 cm
- **20.** If $\triangle ABC \sim \triangle DEF$ and $EF = \frac{1}{3}BC$, then $ar(\triangle ABC) : ar(\triangle DEF)$ is
 - (a) 1:9 (b) 1:3 (c) 9:1 (d) 3:1

- 21. In the given figure, if PQ || BC and $\frac{AP}{PB} = \frac{3}{2}$, then $\frac{ar(\Delta POQ)}{ar(\Delta COB)}$



- 22. Corresponding sides of two similar triangles are in the ratio 9:5. Areas of these triangles are in the ratio
 - (a) 21:85
- (b) 81:25 (c) 9:5 (d) 5:9

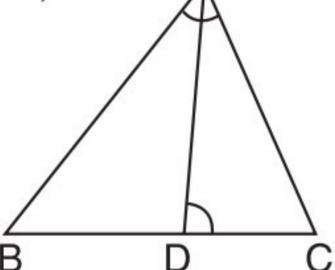
- 23. The areas of two similar triangles are 100 cm² and 49 cm². If the altitude of the larger triangle is 5 cm, then the corresponding altitude of the smaller triangle is equal to
 - (a) 3.9 cm
- (b) 4.5 cm
- (c) 3.5 cm
- (d) 5.4 cm
- 24. The areas of two similar traingles are 121 cm² and 64 cm² respectively. If the median of the first triangle is 13.2 cm, then the corresponding median of the other triangle is equal to
- (a) 11 cm (b) 9.6 cm (c) 11.1 cm (d) 8.1 cm
- 25. If N is the mid-point of AB, NM || BC and $ar(\Delta ABC) = 20 \text{ cm}^2$, then $ar(\Delta ANM)$ is equal to

- (b) 5.5 cm^2
- (c) 4 cm^2
- (*d*) 5 cm^2

- 26. ABC and BDE are two equilateral triangles such that D is the mid-point of BC. Ratio of areas of triangles ABC and BDE is
 - (a) 2:1

(b) 1:2

(c) 4:1


(d) 1:4

[CBSE SP 2011]

- 27. D is a point on side BC of \triangle ABC such that \angle ADC = \angle BAC. Then,

(c) $\frac{AB}{AC} = \frac{BC}{AD}$

(d) $\frac{AC}{BC} = \frac{AB}{AD}$

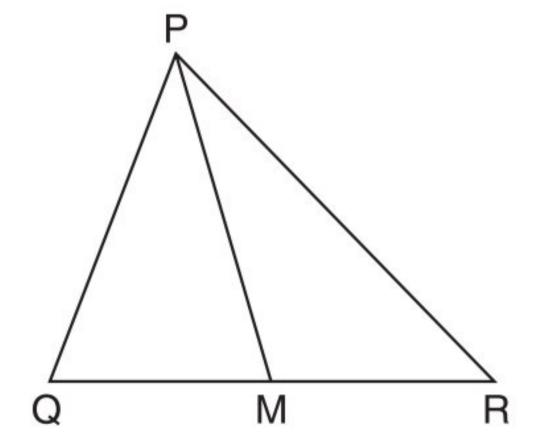
- 28. If a ladder is placed in such a way that its foot is at a distance of 12 m from the wall and its top reaches a window 9 m above the ground, then the length of the ladder is
 - (a) 24 m
- (b) 21 m
- (c) 15 m
- (d) 18 m
- 29. The length of the hypotenuse of an isosceles right triangle whose one side is $4\sqrt{2}$ cm is
 - (a) 12 cm

(b) 8 cm

(c) $8\sqrt{2}$ cm

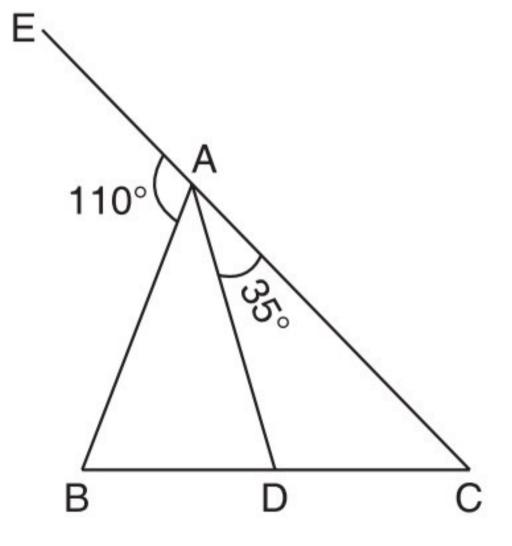
(*d*) $12\sqrt{2}$ cm

- **30.** The perimeter of an isosceles right triangle, the length of whose hypotenuse is 10 cm is
 - (a) $(10\sqrt{2} + 9)$ cm
- (b) $10(\sqrt{2}+1)$ cm


(c) 20 cm

- (*d*) $20\sqrt{2}$ cm
- **31.** In $\triangle ABC$ if AB = 4 cm, BC = 8 cm and $AC = 4\sqrt{3}$ cm, then the measure of $\angle A$ is
 - (a) 30°
- (b) 60°

- 32. In $\triangle PQR$, if $\frac{PQ}{PR} = \frac{QM}{MR}$, $\angle Q = 75^{\circ}$ and $\angle R = 45^{\circ}$, then the measure of ∠QPM is


- (c) 60°
- (d) 45°

33. In the adjoining figure, if exterior $\angle EAB = 110^{\circ}$, \angle CAD = 35°, AB = 5 cm, AC = 7 cm and BC = 3 cm, then CD is equal to

- (b) 2.25 cm
- (c) 1.75 cm
- (d) 2 cm

- **34.** ABCD is a trapezium in which AB \parallel DC and AB = 2DC. Diagonals AC and BD intersect at O. If $ar(\Delta AOB) = 84 \text{ cm}^2$, then $ar(\Delta COD)$ is equal to

- (a) 24 cm^2 (b) 28 cm^2 (c) 42 cm^2 (d) 21 cm^2
- **35.** A vertical stick 30 m long casts a shadow 15 m long on the ground. At the same time, a tower casts a shadow 75 m long on the ground. The height of the tower is
 - $150 \, \mathrm{m}$
- (b) 100 m
- (c) 25 m
- $200 \, \mathrm{m}$

[CBSE SP 2012]

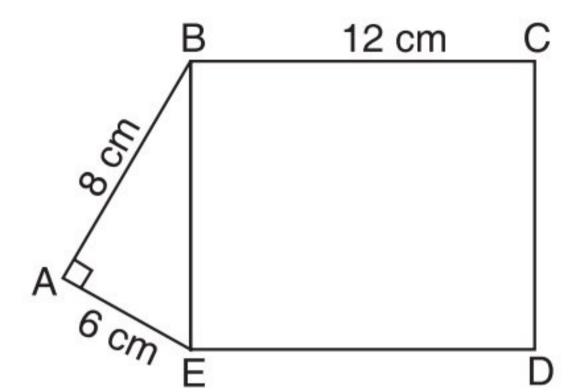
- **36.** The length of an altitude of an equilateral triangle of side *a* is

- (a) $\frac{2a}{\sqrt{3}}$ (b) $\frac{\sqrt{3}}{2a}$ (c) $\frac{a\sqrt{3}}{2}$ (d) $\frac{a}{2\sqrt{3}}$

[CBSE SP 2011]

- 37. If $\triangle ABC \sim \triangle PQR$ such that AB = 1.2 cm, PQ = 1.4 cm, then $\frac{ar(\triangle ABC)}{ar(\triangle PQR)}$ is
- (a) $\frac{9}{49}$ (b) $\frac{3}{7}$ (c) $\frac{36}{49}$ (d) $\frac{6}{7}$
- 38. In $\triangle PQR$, $\angle Q = 90^{\circ}$, PQ = 5 cm, QR = 12 cm. If $QS \perp PR$, then QS is equal to
 - (a) $\frac{80}{13}$ cm (b) $\frac{13}{5}$ cm (c) $\frac{60}{13}$ cm (d) $\frac{12}{5}$ cm

- **39.** In an equilateral triangle ABC, if AD \perp BC, then
 - (a) $3AB^2 = 2AD^2$


(b) $3AB^2 = 4AD^2$

(c) $4AB^2 = 3AD^2$

- (d) $2AB^2 = 3AD^2$
- 40. The length of the second diagonal of a rhombus whose side is 5 cm and one of the diagonals is 8 cm is
 - (a) 14 cm
- (b) 6 cm
- (c) 12 cm
- (d) 10 cm

For Standard Level

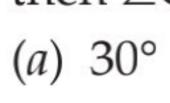
- **41.** In the given figure, if AB = 8 cm, BC = 12 cm, AE = 6 cm then the area of rectangle BCDE is
 - (a) 48 cm^2
 - (b) 72 cm^2
 - (c) 96 cm^2
 - (d) 120 cm^2

- 42. A semicircle is drawn on AC. Two chords AB and BC of length 8 cm and 6 cm respectively are drawn in the semicircle. What is the measure of the diameter of the circle?
 - (a) 12 cm

(b) 11 cm

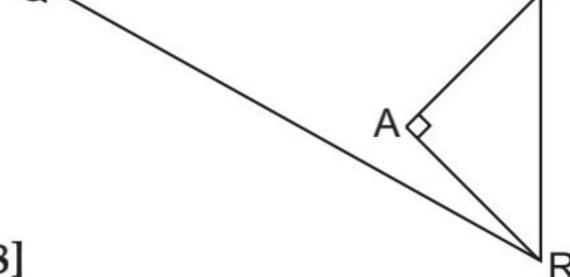
(c) 10 cm

- (d) 14 cm
- **43.** The area of a square inscribed in a circle of radius 8 cm is

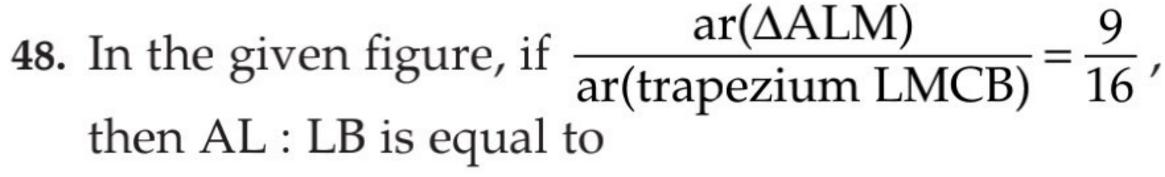

- (a) 64 cm^2 (b) 100 cm^2 (c) 120 cm^2 (d) 128 cm^2

[CBSE 2012]

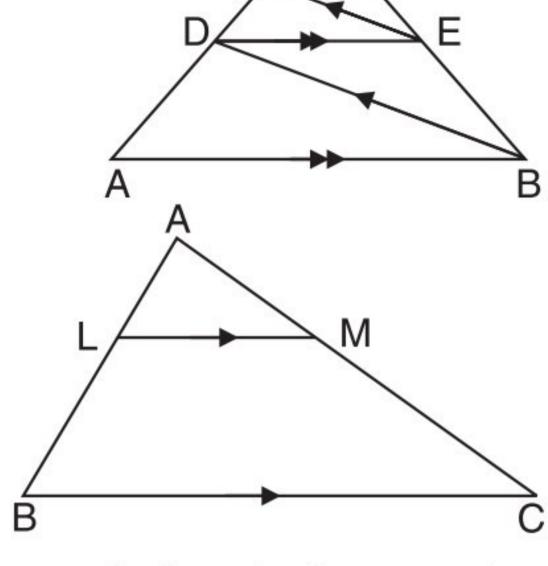
- 44. The radii of two concentric circles are 15 cm and 17 cm, then the length of chord of one circle which is tangent to the other is
 - (a) 8 cm
- (b) 16 cm
- (c) 30 cm
- (*d*) 17 cm


[CBSE SP 2011]

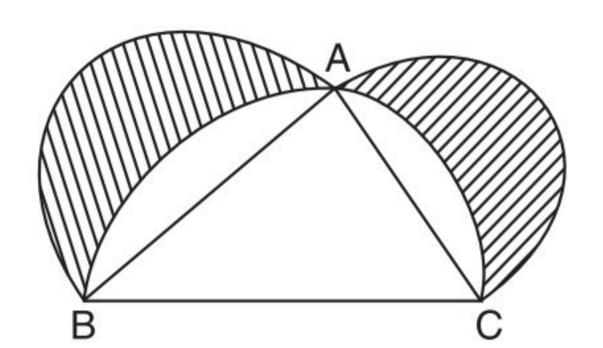
45. In the given figure, if PQ = 24 cm, QR = 26 cm, $\angle PAR = 90^{\circ}$, PA = 6 cm and AR = 8 cm, then $\angle QPR$ is


- (b) 90°
- (c) 60°
- (d) 45°

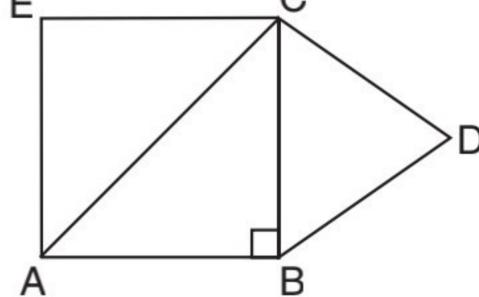
[CBSE 2008]


- **46.** If D is a point on side BC of \triangle ABC such that BD = CD = AD, then
 - (a) $CD^2 + AD^2 = AC^2$
 - (b) $BD^2 + AD^2 = AB^2$
 - (c) $AB^2 + AC^2 = BC^2$
 - (d) $AB \cdot AC = AD^2$

- 47. In the given figure, AB || DE and BD || EF. Then,
 - (a) $BC^2 = AB \cdot CE$
 - (b) $AB^2 = AC \cdot DE$
 - (c) $AC^2 = BC \cdot DC$
 - (d) $DC^2 = CF \cdot AC$



- (a) 2:3 (b) 3:4


- $(c) \ 3:5 \qquad (d) \ 3:2$

- 49. In the given figure ABC is a right-angled triangle right-angled at A. Semicircles are drawn on the sides of $\triangle ABC$. Then, the area of the shaded region is
 - (a) $\frac{\text{ar}(\Delta ABC)}{}$
 - (b) $ar(\Delta ABC)$
 - ar(semicircle BAC) (c)
 - (*d*) ar(semicircle BAC)

- 50. ABC is an isosceles triangle right-angled at B. Two equilateral triangles are constructed with side BC and AC as shown in figure. If $ar(\Delta ACE) = 20 \text{ cm}^2$ then $ar(\Delta BCD)$ is
 - (a) 15 cm^2
- (b) 12 cm^2
- (c) 10 cm^2
- (d) 16 cm^2

Chapter 7: Coordinate Geometry

		MULTIF	PLE-CHOIC	E	QUESTIONS -		
or	Basic and Stand	lard Leve	els				
Cho	ose the correct ans	swer fron	n the given f	ou	r options in the	fol	lowing questions:
	The measure of a and the coordinat	ngle incl	uded betwee	en	the lines repres	sent	ed by $x = 0, y = 0$
	(a) 180° , $(1, 1)$	(b) 90°,	(0,0) (0	c)	120°, (0, 1)	(<i>d</i>)	60°, (1, 0)
2.	x = 5 represents a	line whi	ch is				
	(a) parallel to the	x-axis	(1)	b)	perpendicular t	to th	ne <i>y</i> -axis
	(c) parallel to the	y-axis					
	(d) neither paralle	el nor per	rpendicular t	0	the x -axis and t	he y	/-axis
3.	If a line is drawn line from the <i>x</i> -ax	0	(4, 6) paralle	el t	o the <i>x</i> -axis, the	en tl	he distance of this
	(a) 4 units	(b) 6 un	its (a	c)	10 units	(<i>d</i>)	2 units
4.	The distance of th	ne point (– 3, 4) from t	he	x-axis is		
	(a) 3 units	(b) -3	units (a	c)	4 units	(<i>d</i>)	5 units
							[CBSE SP 2012
5.	The perpendicula	r distanc	e of A(5, 12)	fr	om y-axis is		
	(a) 13 units	(b) 5 ui	nits (a	c)	12 units	(<i>d</i>)	17 units
							[CBSE SP 2012
6.	The base QR of a such that the mid base QR are	-	_				_
	(a) $(0, -5), (0, 5)$		(<i>t</i>	b)	(-5, 0), (5, 0)		
	(c) $(-5, 5), (0, 0)$		(0	d)	(0, 5), (-5, 5)		
7.	The coordinates of (0, 3) are	f the four	rth vertex of t	the	e rectangle form	ed 1	by (0, 0), (2, 0) and
	(a) $(3,0)$	(b) (0, 2)) ((c)	(2, 3)	(<i>d</i>)	(3, 2)
8.	The distance betw	veen the	points P(6, 0)) a:	nd $Q(-2, 0)$ is		
	(a) 2 units	(b) 8 un	its (a	c)	6 units	(<i>d</i>)	4 units
9.	The distance betw	veen the	points $(a + b,$	b	+ c) and $(a - b, a)$	c – Ł	b), is
	(a) $2\sqrt{3}b$ units	(b) $3\sqrt{2}$	b units (a	c)	$2\sqrt{2}b$ units	(<i>d</i>)	b units
10.	The distance betw	veen the	points (a sin	30	°, 0) and $(0, a \sin a)$	n 60	o)) is
	(a) $a (\sin \theta - \cos \theta)$	e) units	(1)	b)	$a (\sin \theta + \cos \theta)$	un	its
	(c) a^2 units		(0	l)	a units		

11.	The points $(-5, 0)$), (5, 0), (0, 4) are th	e ve	rtices of		
	(a) an equilatera			an isosceles tr	iang	le
	(c) a right triang	le	(<i>d</i>)	a scalene trian	gle	
12.	The perimeter of	a triangle with vert	ices	(0, 4), (0, 0) and	(3,	0) is
	(a) 8 units	(b) 10 units	(c)	12 units	(<i>d</i>)	15 units
						[CBSE 2012]
13.	The area of a trian	ngle whose vertices	are	(5, 0), (8, 0) and	l (8,	4) in sq units is
	(a) 20		(b)			
	(c) 6		(<i>d</i>)			[CBSE SP 2012]
14.		y-axis at a distance he length of AB is	4 un	its from the ori	gin.	If the coordinates
	(a) 7 units	(b) 5 units	(c)	49 units	(<i>d</i>)	25 units
						[CBSE 2013]
15.	If point $(0, 3)$ is ea	quidistant from (5, ι	a) an	d(a, a) then a is	s equ	ual to
	(a) $3 \text{ or } -3$	(b) $5 \text{ or } -5$	<i>(c)</i>	4 or – 4	<i>(d)</i>	2 or – 2
16.		of a point on the x -a	xis,	which is equidi	stan	t from (-2, 5) and
	(2, -3) are	(1-) ((-)	(2 0)	(<u>1</u>)	(2 0)
		(b) (-5, 0)				
17.		nid-point of the line	seg	ment joining th	e po	oints A(– 6, 5) and
	B(-2,3), then the			320	2 40	
	(a) - 8					4 [CBSE SP 2011]
18.	If the point $(x, 4)$ x is equal to	lies on a circle who	ose o	centre is O(0, 0)	and	d radius is 5, then
	$(a) \pm 5$	$(b) \pm 3$	(c)	0	(<i>d</i>)	± 4
19.	0	ne segment is 10 uni e second end point				1
	(a) $3 \text{ or } -9$	(b) $-3 \text{ or } 9$	(c)	6 or 27	(<i>d</i>)	-6 or -27
20.	If the distance of then	the point $P(x, y)$ from	m th	e point A(5, 1)	and	B(-1, 5) are equal
	(a) $y = 5x$	(b) $5x = y$	(c)	2x = 3y	(<i>d</i>)	3x = 2y
21.	627 82 920 35	7, 9) are the end percent of the circle		s of the diame	ter (of circle, then the
	(a) (4, 5)	(<i>b</i>) (5, 4)	(c)	(8, 2)	(<i>d</i>)	(2, 8)
22.	0 0	n alongside, point P(then the coordinates		•		B
	(a) $A(0, 4)$, $B(8, 0)$)	(b)	A(8, 0), B(0, 4)		P (2, 4)
	(c) A(4, 0), B(0, 8)		• •	A(2, 6), B(6, 2)		(0, 0) A

23.	3. A circle drawn with $C(2, -4)$ as the centre passes through $(5, -8)$. The point which does not lie in the interior of the circle is							
		(<i>b</i>) (1, −3)		(d) (9, 4)				
24.		a rhombus taken in f the fourth vertex a	18 St 1000 U.S.	2, 3) and (-3, -2), then				
	(a) $(-1, -2)$	(b) $(-2, -3)$	(c) $(2, -1)$	(<i>d</i>) (1, 2)				
25.	If A(6, 1), B(8, 2), then the value of		are the vertices of a	parallelogram ABCD,				
	(a) 3	(b) 7	(c) 6	(<i>d</i>) 5				
26.	If $A(5, p)$, $B(1, 5)$,	C(2, 1) and D(6, 2)	are the vertices of a	square then				
	(a) $p = 7$	(b) $p = 3$	(c) $p = 6$	(d) $p = 8$				
27.	,), then the coordina						
20								
20.	(-2, 2q) are $(5, p)$,	•	of the fifte joining	the points $(3p, 4)$ and				
	22 SI SESSO SI SESSO SI SESSO SE	(b) $p = 3$, $q = 4$	(c) $p = 4$, $q = 2$	(d) $p = 2, q = 5$				
29.	29. In the given figure, $P(0, -4)$ and $Q(-2, y)$ are the points of trisection of the line joining $A(2, -3)$ and $B(-4, -6)$, then y equals							
	(a) -3	(b) 3	(c) - 5	(<i>d</i>) 5				
) is trisected at points				
	P(p , -2) and Q($\frac{5}{3}$, q). Find the values of p and q .							
	(a) $p = \frac{8}{3}$, $q = \frac{2}{3}$		(b) $p = \frac{7}{3}$, $q = 0$					
	(c) $p = \frac{1}{3}$, $q = 1$		(d) $p = \frac{2}{3}$, $q = \frac{1}{3}$					
31.		of the point P dividual of the	0	ent joining the points				
	(a) (2, 4)	(<i>b</i>) (3, 5)	(c) (4, 2)	(<i>d</i>) (5, 3) [CBSE SP 2012]				
32.	The ratio in which divided by (2, -5)		t joining the points	s (-3, 5) and (4, -9) is				
	(a) $2:3$	(b) 5:2	(c) 2:5	(d) 3:2				
33.	The ratio in which	h the line segment j	oining $A(-2, -3)$ ar	nd B(3, 7) is divided by				
	the y-axis is							
	(a) 2:3	(<i>b</i>) 1:3	(c) 1:2	(<i>d</i>) 3:1				
34.	If the centroid of then (x, y) is equal	~	d by $(x, 0)$, $(5, -2)$ a	and (-8, y) is at (-2, 1)				

(a) (-3, 5) (b) (3, -5) (c) (4, 6) (d) (6, 4)

For Standard Level

35.	The perpendicular bisector of the line segment joining the points $A(2, 3)$ an	ıd
	B(5, 6) cuts the y-axis at	

- (a) (8,0) (b) (0,8) (c) (0,-8) (d) (0,7)

36. The length of median AD of a triangle formed by A(7, -3), B(5, 3) and C(3, -1) is

- (a) 3 units (b) 7 units (c) 5 units (d) 10 units

37. The coordinates of a point on *x*-axis which lies on the perpendicular bisector of line segment joining the points (7, 6) and (-3, 4) are

- (a) (0, 2) (b) (3, 0) (c) (0, 3) (d) (2, 0)

38. If point $P\left(-\frac{1}{3},0\right)$ divides the line segment joining A(1, -2) and B(-3, 4) in the

ratio 1:2, then the coordinates of point Q which divides AB in the ratio 2:1 are

- (a) $\left(-\frac{5}{3}, 2\right)$ (b) $\left(2, -\frac{5}{3}\right)$ (c) $\left(\frac{5}{3}, 2\right)$ (d) $\left(\frac{5}{3}, -2\right)$

39. The point P which divides the line segment joining the points A(2, -5) and B(5, 2) in ratio 2:3 internally lies in the

(a) I quadrant

(b) II quadrant

(c) III quadrant

(d) IV quadrant

[CBSE 2011]

40. If the point $P\left(-3, \frac{2}{3}\right)$ lies on the line segment joining points A(-5, -4) and B(-2, -4)3), then

- (a) AP = 3PB (b) AP = 2PB (c) $AP = \frac{1}{2}AB$ (d) $AP = \frac{1}{2}AB$

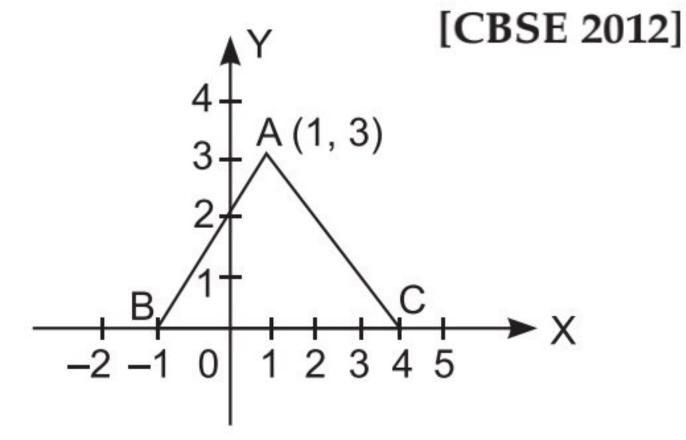
41. If two vertices of a triangle are (3, 2) and (-2, 1) and its centroid is at $(\frac{5}{3}, -\frac{1}{3})$, then the coordinates of the third vertex are

- (a) (-3, 5) (b) (4, -4) (c) (2, -2) (d) (3, 4)

42. If the vertices of a triangle are (3, -5), (-7, 4), (10, -k) and its centroid is (k, -1), then

- (a) k = 3 (b) k = 1 (c) k = 2 (d) k = 4

43. If origin is the centroid of a triangle whose vertices are A(a, b), B(b, c) and C(c, a), then the value of a + b + c is


- (a) 0
- (b) 1
- (c) 2
- (d) 3

44. If the points (0, 0), (1, 2) and (x, y) are collinear, then

- (a) x = y
- (b) 2x = y (c) x = 2y
- (d) 2x = -4y

45. In the given figure, the area of triangle ABC (in sq units) is:

- (a) 15
- (b) 10
- [CBSE 2013]

(c) 7.5

(d) 2.5

Chapter 8: Trigonometric Ratios

MULTIPLE-CHOICE QUESTIONS

For Basic and Standard Levels

Choose the correct answer from the given four options in the following questions:

- 1. Which of the following is not defined?
 - (a) $\cos 0^{\circ}$

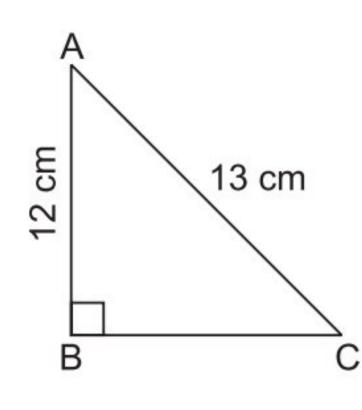
(b) tan 45°

(c) sec 90°

(*d*) sin 90°

[CBSE SP 2011]

- 2. The maximum value of $\frac{1}{\cos \cot \theta}$ (0° ≤ θ ≤ 90°) is
 - (a) 1 (b) 0
- (c) $\frac{1}{2}$
- 3. If tan A = $\frac{3}{4}$ and A is acute, then the value of cos A is
 - (a) $\frac{5}{4}$ (b) $\frac{5}{3}$ (c) $\frac{3}{5}$

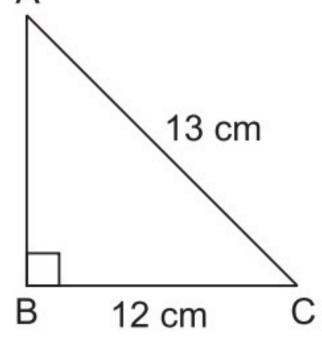

- **4.** In $\triangle ABC$, if $\angle B = 90^{\circ}$, $\sin A = \frac{3}{5}$, then the value of $\cos C$ is

 - (a) $\frac{5}{4}$ (b) $\frac{4}{5}$ (c) $\frac{3}{5}$ (d) $\frac{5}{3}$
- 5. In $\triangle ABC$, if $\angle A + \angle B = 90^{\circ}$, cot $B = \frac{3}{4}$, then the value of tan A is
 - (a) $\frac{4}{5}$ (b) $\frac{3}{4}$ (c) $\frac{4}{3}$

- 6. If sec A = $\frac{2}{\sqrt{3}}$ and \angle A + \angle B = 90°, then the value of cosec B is

 - (a) $\frac{1}{\sqrt{3}}$ (b) $\frac{\sqrt{3}}{2}$ (c) $\frac{2}{\sqrt{3}}$ (d) $\sqrt{3}$
- 7. In the given figure, tan A cot C is equal to

(*d*) 0



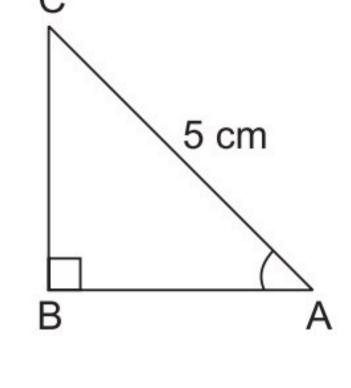
[CBSE SP 2011]

- 8. In the figure, AC = 13 cm, BC = 12 cm, then sec C is equal to

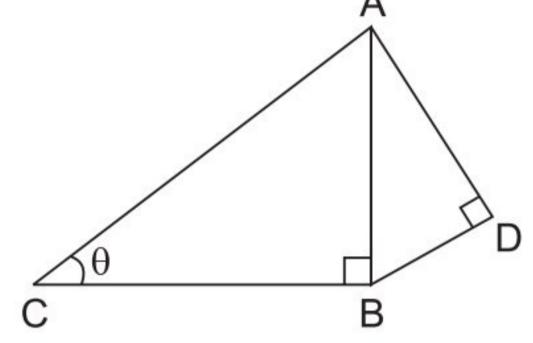
(b) $\frac{5}{12}$

[CBSE SP 2011]

9. In the given figure, $\triangle ABC$ is right-angled at B and tan A = $\frac{4}{3}$. If AC = 5 cm, the length of BC is



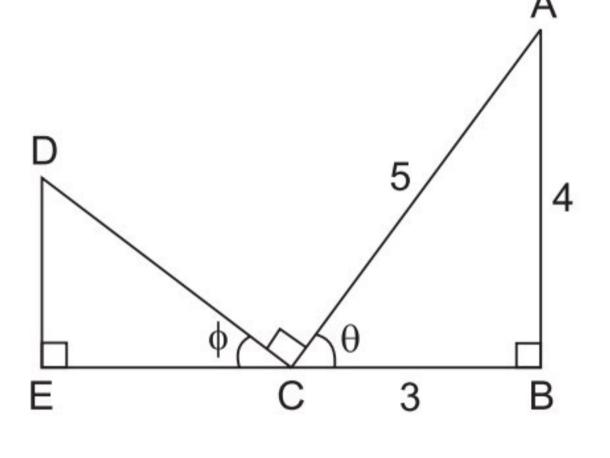
(*b*) 3 cm


(c) 12 cm

(d) 9 cm

[CBSE SP 2011]

10. In the given figure, AD = 4 cm, BD = 3 cm and CB = 12 cm, the value of $\cot \theta$ is

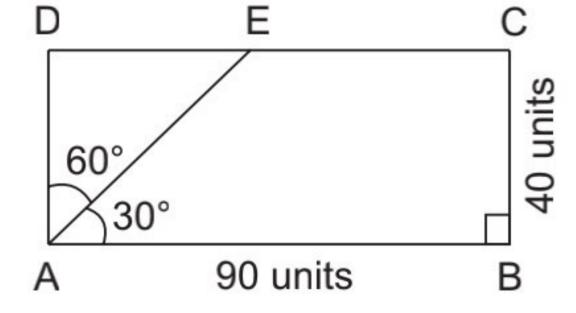

[CBSE 2008, CBSE SP 2010, 2011]

11. In the given figure, the value of $\cos \phi$ is

(a) $\frac{5}{4}$

(c) $\frac{3}{5}$

[**Hint:** $90^{\circ} + \theta + \phi = 180^{\circ}$ and $\theta + 90^{\circ} + \angle A = 180^{\circ}$ $\Rightarrow \phi = \angle A$

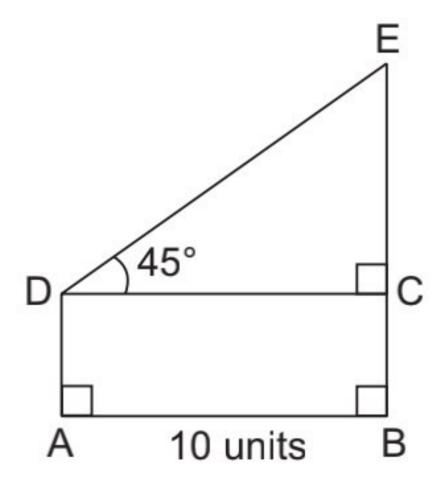

12. If ABCD is a rectangle, then AE is equal to

(a) 80 units

(b) 90 units

(c) 85 units

(*d*) 70 units


13. In the adjoining figure, the value of CE + DE (using $\sqrt{2} = 1.41$) is

(a) 36.15 units

(b) 48.2 units

(c) 24.1 units

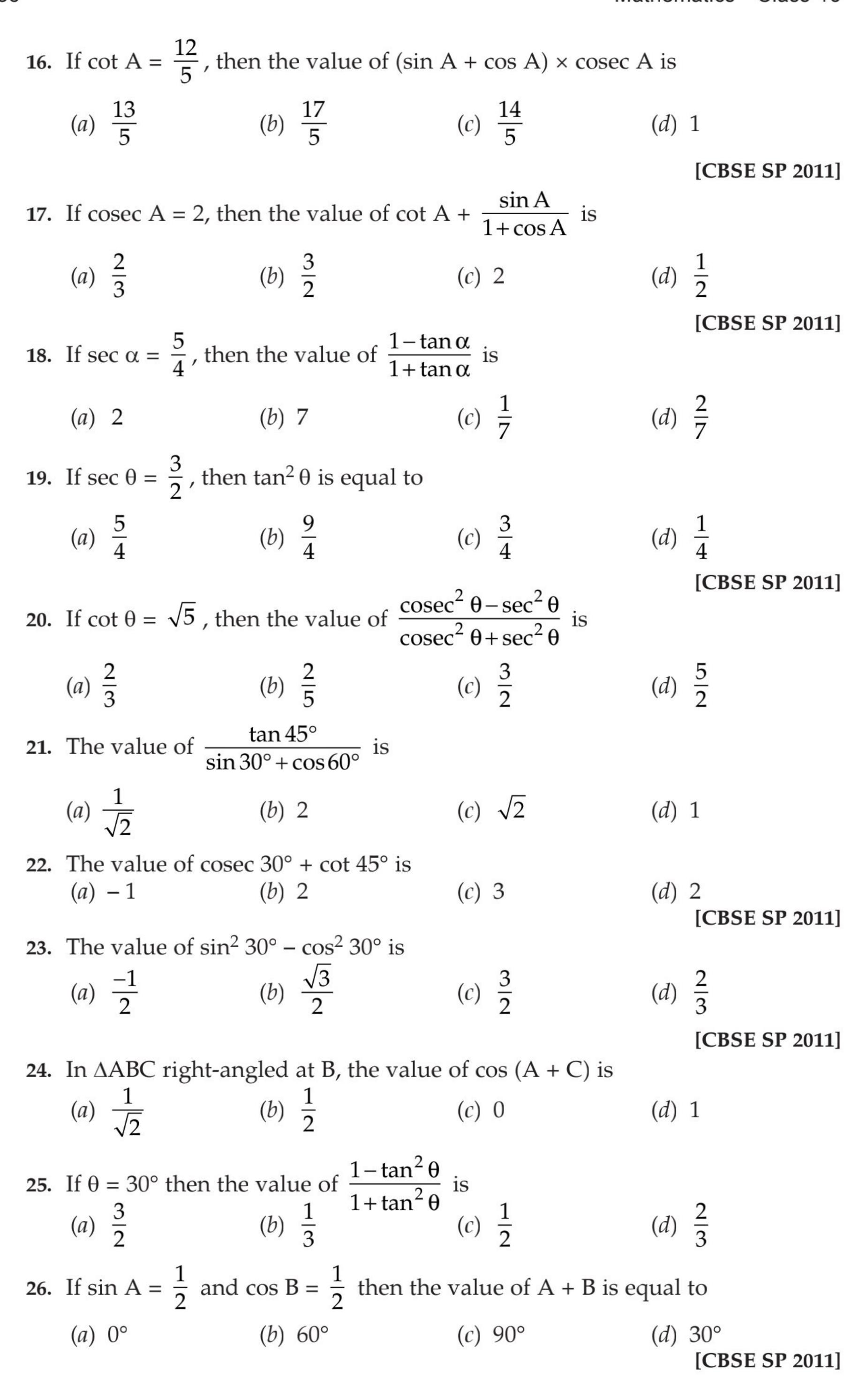
(d) 12.05 units

14. If A is an acute angle in a right $\triangle ABC$, right-angled at B, then the value of $\sin A + \cos A is$

(a) equal to 1

(b) greater than 1

(c) less than 1


(d) 2

[CBSE SP 2011]

15. If $\cos \theta = \frac{1}{2}$, then the value of $(\cos \theta - \sec \theta)$ is

(a) $\frac{3}{2}$ (b) $\frac{-3}{2}$ (c) $\frac{\sqrt{3}}{2}$

[CBSE SP 2011]

27. If $\sin 2A = 1$, $0^{\circ} < A < 90^{\circ}$, then the value of A is

- (a) 30° (b) 45° (c) 60°
- (d) 90°

28. If $2 \cos 3A = 1$, then the value of A is

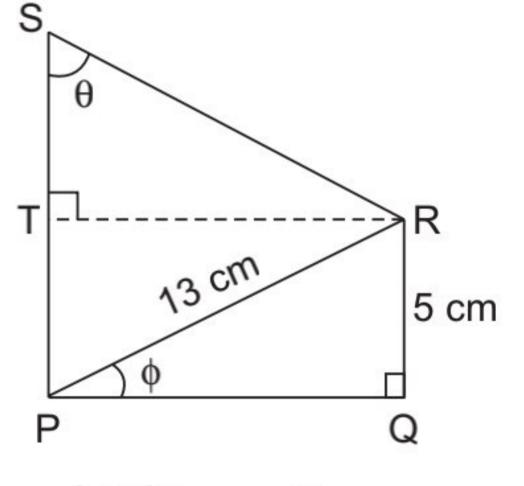
- (a) 40° (b) 60° (c) 80°

- (d) 20°

29. If $\tan 3\theta = \sin 30^\circ + \cos 45^\circ \sin 45^\circ$ then the value of θ is

- (a) 15°
- (b) 30° (c) 45°
- (d) 60°

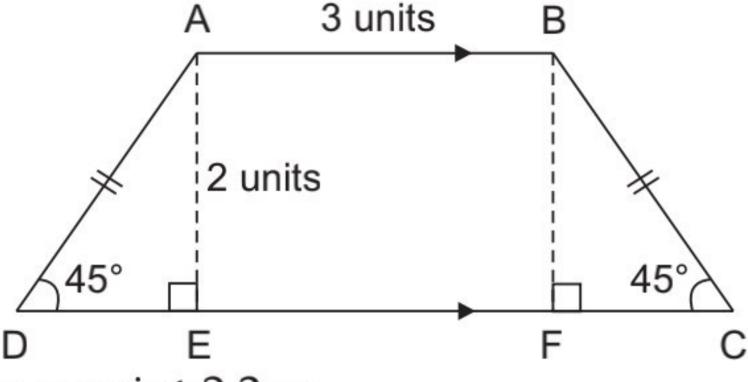
30. If for some angle θ , cot $2\theta = \frac{1}{\sqrt{3}}$, then the value of $\sin 3\theta$, where $3\theta \le 90^\circ$ is $(a) \quad \frac{1}{2} \qquad (b) \quad 1 \qquad (c) \quad 0 \qquad (d) \quad \frac{\sqrt{3}}{2}$


- (a) $\frac{1}{\sqrt{2}}$

For Standard Level

31. If cosec $\theta = 2$, cot $\theta = \sqrt{3}p$, then the value of p is

- (a) $\sqrt{3}$ (b) 2 (c) $\frac{2}{\sqrt{3}}$
- (*d*) 1


32. In the given figure, PS = 14 cm, the value of tan θ is

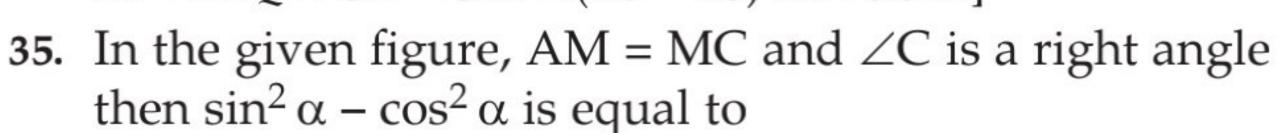
[CBSE SP 2011]

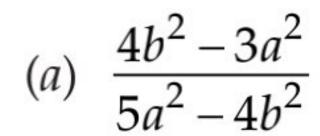
33. In the adjoining figure, if ABCD is an isosceles trapezium, its perimeter (using $\sqrt{2} = 1.41$) is

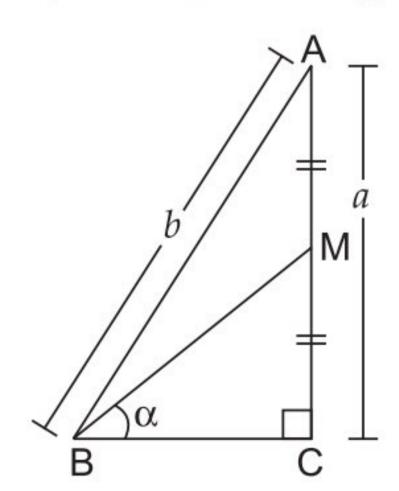
- (a) 17.64 units (b) 18.64 units
- (c) 15.64 units (d) 16.64 units

3 m

34. A pendulum of length $\sqrt{3}$ m is attached to a point 2.3 m from the ground. It swings through an angle of 30° on each side of the vertical. The height above the ground at ends of its path is


(a) $0.9 \, \text{m}$


 $(b) 0.6 \,\mathrm{m}$


 $(c) 0.7 \,\mathrm{m}$

 $(d) 0.8 \,\mathrm{m}$

[Hint: $\cos 30^\circ = \frac{OM}{AO} \implies \frac{\sqrt{3}}{2} = \frac{OM}{\sqrt{3}} \implies OM = \frac{3}{2} = 1.5$ AP = MQ = CD - OM = (2.3 - 1.5) m = 0.8 m

Horizontal

- **36.** In $\triangle ABC$ right-angled at C, if tan A = 1, then the value of 2 sin A cos A is

 - (a) 1 (b) $\frac{1}{2}$ (c) 2
- (d) $\frac{\sqrt{3}}{2}$
- 37. If $\tan \theta = \frac{4}{5}$, then the value of $\frac{5\sin \theta 2\cos \theta}{5\sin \theta + 2\cos \theta}$ is
- (a) $\frac{1}{3}$ (b) $\frac{2}{5}$
- (d) 6
- 38. If $\sin \theta = \frac{1}{5}$, then the value of $\frac{1}{5} \cot^2 \theta + \frac{1}{5}$ is
 - (a) $\frac{1}{125}$ (b) $\frac{1}{5}$
- (c) 25
- (*d*) 5

[CBSE SP 2011]

- 39. If $\cos \theta = \frac{2}{3}$, then $2 \sec^2 \theta + 2 \tan^2 \theta 7$ is equal to

[CBSE SP 2011]

- **40.** $(\sin 90^{\circ} \cos 45^{\circ} + \cos 60^{\circ}) (\cos 0^{\circ} + \sin 45^{\circ} + \sin 30^{\circ})$ is equal to
- (b) $\frac{7}{4}$ (c) $\frac{4}{7}$

Chapter 9: Trigonometric Identities

MULTIPLE-CHOICE QUESTIONS -

For Basic and Standard Levels

Choose the correct answe	r from the given	four options in th	ne following questions:
--------------------------	------------------	--------------------	-------------------------

- 1. $(1 \sin A)$ (sec A + tan A) is equal to
 - (a) cosec A (b) sec A
- (c) cos A
- $(d) \sin A$

- 2. The value of 5 $tan^2 \theta 5 sec^2 \theta$ is
 - (a) 1
- (c) 0
- (*d*) 5

[CBSE SP 2011]

- 3. The value of the expression ($\sec^2 \theta 1$) $\cot^2 \theta$ is
 - (a) 2
- (b) 0 (c) 1
- (d) 1
- **4.** $(1 + \tan^2 \theta) (1 \sin \theta) (1 + \sin \theta) (1 + \cos \theta) (1 \cos \theta) (1 + \cot^2 \theta)$ is equal to
- (b) 0
- (c) 1

- 5. $\frac{1-\tan^2\theta}{1+\tan^2\theta}$ is equal to
 - (a) $\tan^2 \theta \cot^2 \theta$

(b) $\cot^2 \theta - \tan^2 \theta$

(c) $\cos^2 \theta - \sin^2 \theta$

(d) $\sin^2 \theta - \cos^2 \theta$

- 6. $\sqrt{\frac{1+\cos\theta}{1-\cos\theta}}$ is equal to
 - (a) $\csc^2 \theta \cot^2 \theta$

(b) $\csc^2 \theta + \cot^2 \theta$

(c) $\cos \theta + \cot \theta$

- (d) $\cot \theta \csc \theta$
- 7. The expression $\sec^4 \theta \sec^2 \theta$ is equal to
 - (a) $\tan^2 \theta \tan^4 \theta$

(b) $-\tan^4\theta - \tan^2\theta$

(c) $\tan^2 \theta + \tan^4 \theta$

- (d) $\tan^4 \theta \tan^2 \theta$
- 8. If $x = m \sin \theta$ and $y = n \cos \theta$, then the value of $n^2x^2 + m^2y^2$ is
 - (a) $m^2 + n^2$ (b) $m^2 n^2$ (c) mn (d) $m^3 n^3$

[CBSE SP 2011]

- 9. If $\frac{\sin x}{(1+\cos x)} + \frac{\sin x}{(1-\cos x)} = k$, then k is equal to
 - (a) $2 \csc x$ (b) $2 \sin x$ (c) $2 \cos x$ (d) $2 \sec x$

- **10.** If $1 + 2 \sin^2 \theta \cos^2 \theta = \sin^2 \theta + \cos^2 \theta + 4 k \sin^2 \theta \cos^2 \theta$ then
 - (a) $k = \frac{-1}{2}$ (b) k = -1 (c) $k = \frac{1}{2}$ (d) k = 1

- 11. If $2x = \csc \theta$ and $\frac{2}{x} = \cot \theta$, then the value of $4\left(x^2 \frac{1}{x^2}\right)$ is

(a)
$$-1$$
 (b) $\frac{1}{2}$

(b)
$$\frac{1}{2}$$

For Standard Level

12.
$$\frac{\sin \theta}{1 + \cos \theta}$$
 is equal to

(a)
$$\frac{1+\cos\theta}{\sin\theta}$$
 (b) $\frac{1-\cos\theta}{\sin\theta}$ (c) $\frac{1-\cos\theta}{\cos\theta}$ (d) $\frac{1-\sin\theta}{\cos\theta}$

(b)
$$\frac{1-\cos\theta}{\sin\theta}$$

(c)
$$\frac{1-\cos\theta}{\cos\theta}$$

$$(d) \frac{1-\sin\theta}{\cos\theta}$$

13. If
$$\sin \theta = \frac{p}{q}$$
, then the value of $\tan \theta + \sec \theta$ is

(a)
$$\sqrt{\frac{q-p}{q+p}}$$

(b)
$$\sqrt{\frac{q+p}{q-p}}$$

(a)
$$\sqrt{\frac{q-p}{q+p}}$$
 (b) $\sqrt{\frac{q+p}{q-p}}$ (c) $\sqrt{\frac{q^2+p^2}{q^2-p^2}}$ (d) $\sqrt{\frac{q^2-p^2}{q^2+p^2}}$

(d)
$$\sqrt{\frac{q^2 - p^2}{q^2 + p^2}}$$

14. If
$$\sec \theta + \tan \theta = x$$
, then the value of $\sec \theta - \tan \theta$ in terms of x is

(a)
$$x^2$$
 (b) $\frac{1}{x}$ (c) x^3

(b)
$$\frac{1}{x}$$

(c)
$$x^3$$

$$(d) \frac{x}{2}$$

15. If
$$x = 3 \sec^2 \theta - 1$$
 and $y = 3 \tan^2 \theta - 2$, then $x - y$ is equal to

$$(b)$$
 2

16. If
$$a \cot \theta + b \csc \theta = p$$
 and $b \cot \theta + a \csc \theta = q$, then the value of $p^2 - q^2$ is equal to

(a)
$$a^2 - b^2$$

(a)
$$a^2 - b^2$$
 (b) $b^2 - a^2$ (c) $a^2 + b^2$ (d) $b - a$

(c)
$$a^2 + b^2$$

$$(d)$$
 $b-a$

[CBSE SP 2011]

17. If
$$\sin \theta + \sin^2 \theta = 1$$
, then the value of the expression $(\cos^2 \theta + \cos^4 \theta)$ is

(d)
$$\frac{1}{3}$$

18. If
$$\cos \theta + \cos^2 \theta = 1$$
, then the value of $\sin^2 \theta + \sin^4 \theta$ is

(a)
$$\frac{1}{2}$$
 (b) 1

$$(d)$$
 2

19. If
$$\sec \theta + \tan \theta = m$$
, then $\sec \theta$ is equal to

(a)
$$\frac{m^2-1}{m}$$

(a)
$$\frac{m^2-1}{m}$$
 (b) $\frac{m^2-1}{2m}$ (c) $\frac{m^2+1}{2m}$

(c)
$$\frac{m^2+1}{2m}$$

$$(d) \frac{m^2+1}{m}$$

20. If
$$\sec \theta + \tan \theta = m$$
, then $\tan \theta$ is equal to

(a)
$$\frac{m^2-1}{2m}$$
 (b) $\frac{m^2+1}{2m}$ (c) $\frac{m^2-1}{m}$ (d) $\frac{m^2+1}{m}$

$$(b) \quad \frac{m^2+1}{2m}$$

(c)
$$\frac{m^2-1}{m}$$

$$(d) \frac{m^2+1}{m}$$

Chapter 10: Trigonometric Ratios of Complementary Angles

MULTIPLE-CHOICE QUESTIONS

For E	Basic and Stand	lard Levels			
Choo	se the correct an	swer from the give	en four options in	the following	questions:
		° can be expressed	-		-
	(a) $\sin 15^{\circ} + \sec \theta$	-	(b) cos 15° +		
	$(c) \cos 15^{\circ} + cc$		` /	cosec 15° [CBS	SE SP 2011]
2.	` '	sec A sec (90° – A)	07 10.0		-
	(a) $\sqrt{2}$	(b) 1	(c) 0	(d) 2	
3.		– sin 36° sin 54° is		(00) —	
0.	(a) 0	(b) 1	(c) - 1	(d) 2	
		\ /		(u) \angle	
4.	The value of $\frac{si}{-}$	$\frac{\ln 18^{\circ}}{\cos 72^{\circ}} + \frac{\tan 26^{\circ}}{\cot 64^{\circ}}$ is	5		
	CO	$\cos 72^{\circ}$ $\cot 64^{\circ}$	2	2	
	(a) 1	(b) 2	(c) $\frac{3}{2}$	$(d) \frac{2}{3}$	
-	The welve of ta	n 55° ot 35° + cot 1° cot	2° cot 2° cot 80	00 :0	
3.	co	ot 35°	2 (013 (018)	9 15	
	(a) -2	(b) 2	(c) 1	(d) 0	
6		$\cos (30^{\circ} - \theta)$ is equal			
0.	$(a) \ 2\cos\theta$	(b) $2 \sin \theta$	(c) 0	(d) 1	
	(<i>u</i>) 2 cos 0	(0) 2 5111 0	(C) U		SE SP 2011]
7	cococ (60° + 0)	coc (21° A) co	t (25° A) + tan (5		-
7.	. COSEC (0) + 0)	$-\sec(21^{\circ}-\theta)-\cos^{\circ}$	t(33 - 0) + tair(3	oo + o) is equa.	1 10
	(a) -1	(b) $\frac{3}{2}$	(c) 0	(<i>d</i>) 1	
8.	$17 \sec^2 29^\circ - 17$	7 cot ² 61° is equal t	to		
	(a) 34	(b) 0	(c) 17	(d) 1	
9.	If $\alpha + \beta = 90^{\circ}$ the	nen $\sqrt{\cos\alpha \csc\beta}$	$-\cos\alpha\sin\beta$ is ea	gual to	
-		y	1 20 0	1	

(a) $\cos \alpha$ (b) $\sin \alpha$ (c) $\sec \alpha$ (d) $\csc \alpha$ **10.** If $\cos (81^\circ + \theta) = \sin \left(\frac{k}{3} - \theta\right)$ then k is equal to (a) 43.5° (b) 54° (c) 27°

(d) 13.5°

11. If $\frac{\cos 20^\circ}{\sin 70^\circ} + \frac{2\cos \theta}{\sin (90^\circ - \theta)} = \frac{k}{2}$ then k is equal to

(a) 3 (b) 5 (c) 6 (d) 4 **12.** If $\sin \theta = \cos \theta$ then the value of θ is

Scanned with CamScanner

	$(a) 0^{\circ}$	(b) 45°	(c) 30°	(d) 90°
13.	If $tan A = cot B$, the	hen A + B is equal t	O	
	$(a) 0^{\circ}$	(b) 90°	$(c) < 90^{\circ}$	$(d) > 90^{\circ}$
				[CBSE SP 2011]
14.	If $\cos 9\theta = \sin \theta$ ar	10° 10° 10° 10° 10° 10°	value of tan 5θ is	
	(a) $\frac{1}{\sqrt{3}}$	(b) $\sqrt{3}$	(c) 0	(d) 1
	$\sqrt{3}$			[CBSE SP 2011]
15	If $tan 2\theta = \cot (\theta - \theta)$	· 18°) where 2θ is an	acute anole, then t	
13.	(a) 36°	(b) 18°	(c) 72°	(d) 54°
16.		` '		en the measure of θ
200	is	0 00)	arrace arrage, arr	
	(a) 110°	(b) 55°	(c) 24°	(d) 40°
17.	If $\sin 3A = \cos (A)$	– 26°) where 3A is	an acute angle, the	n the measure of A
	is			
	(a) 29°	(b) 14.5°	(c) 58°	(d) 43.5°
18.	If $\cos (40^\circ + A) = 9$	sin 30°, the value of	A is	
	(a) 30°	(b) 40°	(c) 60°	(d) 20°
				[CBSE SP 2011]
	tandard Level			
19.	The value of expre	ession $\frac{\sec^2 54^\circ - \cot^2 54^\circ - \cot^2 56^\circ}{\csc^2 57^\circ - \cot^2 56^\circ}$	$\frac{t^2 36^\circ}{\ln^2 33^\circ} + 2 \sin^2 38^\circ$	$sec^2 52^\circ - sin^2 45^\circ$ is
	_	(b) $\frac{3}{2}$		_
	(u) $\overline{2}$	(0) $\overline{2}$	(c) 2	$(a) \overline{2}$
20	The realise of the o	$\cos^2(45^\circ)$	$-\theta$) + cos ² (45° + θ)	ic ogual to
20.	The value of the e	xpression $\frac{\cos^2(45^\circ)}{\tan^2(30^\circ)}$	$^{\circ}-\theta$) tan ² (60°+ θ)	is equal to
	$\sqrt{3}$		1	
	(a) $\frac{\sqrt{3}}{2}$	(b) $\sqrt{3}$	(c) $\frac{1}{\sqrt{3}}$	(d) 1
	22200 1 222	700 2		
21.	If $\frac{\cos^2 20^\circ + \cos^2}{2(\sin^2 59^\circ + \sin^2 59^\circ + \cos^2 59^\circ$	$\frac{70^{\circ}}{31^{\circ}} = \frac{2}{k}$ then k is e	qual to	
	(a) 3	(b) 4	(c) 1	(d) 2
22.	If $\sin \theta - \cos \theta = 0$, then the value of t	he expression sin ⁶ ($\theta + \cos^6 \theta$ is
	(a) $\frac{2}{3}$	(b) $\frac{1}{3}$	(c) $\frac{3}{4}$	$(d) \frac{1}{4}$
	3	_	4	4
23.		$\sqrt{2} \cos (90^{\circ} - \theta)$, the		
	$(a) \frac{1}{\sqrt{2}}$	(b) $\sqrt{2}-1$	(c) $\sqrt{2} + 1$	$(d) \frac{1}{\sqrt{2}}$
	$\sqrt{2+1}$			$\sqrt{2}-1$

- 24. In $\triangle ABC$, $\sin \frac{B+C}{2}$ in terms of $\angle A$ is
 - (a) $\csc \frac{A}{2}$

(b) $\sec \frac{A}{2}$

(c) $\sin \frac{A}{2}$

- (d) $\cos \frac{A}{2}$
- **25.** If $\cos (\alpha + \beta) = 0$, then $\sin (\alpha \beta)$ can be reduced to

 - (a) $\cos \beta$ (b) $\cos 2\beta$ (c) $\sin \alpha$ (d) $\sin 2\alpha$

[Hint:
$$\cos (\alpha + \beta) = 0 = \cos 90^{\circ} \implies \alpha + \beta = 90^{\circ} \implies \alpha + \beta - 2\beta = 90^{\circ} - 2\beta$$

 $\implies \sin (\alpha + \beta - 2\beta) = \sin (90^{\circ} - 2\beta) \implies \sin (\alpha - \beta) = \cos 2\beta$]

Chapter 11: Some Applications of Trigonometry

80	- MULTIPLE-CHOICE QUESTIONS	_
----	-----------------------------	---

Fo

or	r Basic and Standard Levels					
10	ose the correct ans	swer from the giver	ı foı	ar options in the	e following questions:	
1.	O	by the line of sight the horizontal leve			l when the point being	
	(a) vertical angle		(b)	angle of depre	ssion	
	(c) angle of eleva	tion	(<i>d</i>)	obtuse angle	[CBSE SP 2012]	
2.	O	ation of the top of a ot of the tower is 60			t on the ground, 20 m of the tower is	
	(a) 20 m	(b) $20\sqrt{3}$ m	(c)	$10\sqrt{3}$ m	(<i>d</i>) $15\sqrt{3}$ m	
3.	0	river makes an ang ss the river is 98 m,			ver bank. If the length the river is	
	(a) 49 m	(b) 98 m	(c)	24.5 m	(d) 73.5 m	
4.	, ,	height of 82.5 m from the horizontal. The			, is attached to a string string is	
	(a) 175 m	(b) 160 m	(c)	156 m	(d) 165 m	
5.	If the length of the elevation of sun's		cal p	oole is equal to	its height, the angle of	
	(a) 45°	(b) 60°	(c)	30°	(d) 75°	
6.	The measure of an	igle of elevation of to	op o	of the tower 75 $$	3 m high from a point	
	at a distance of 75	m from foot of the	tov	ver in a horizon	ntal plane is	
	(a) 30°	(b) 60°	(c)	90°	(d) 45° [CBSE SP 2012]	
7.				f a tower is 30 m	n. If the Sun's elevation	
	is 60°, then the length of the shadow is					

(a) 35 m

(b) 20 m (c) 10 m

(d) 15 m

8. An observer 1.4 m tall is 28.6 m away from a tower 30 m high. The angle of elevation of the top of the tower from his eye is

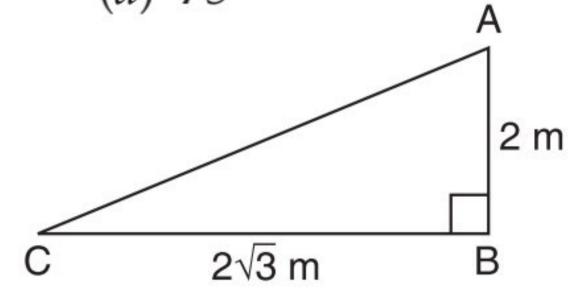
(a) 60°

(b) 45°

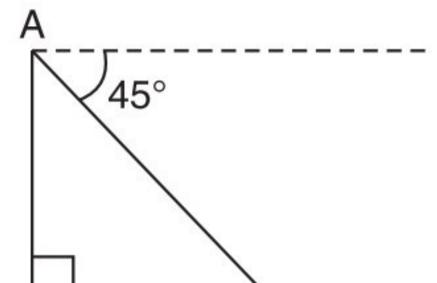
(c) 30°

(d) 75°

9. The given figure shows the observation of point C from point A. The angle of depression from A is


(a) 60°

(b) 30°


(c) 45°

(d) 75°

[CBSE SP 2012]

10. The angle of depression of point C when observed from point A is 45° . If BC = 1 m, then AB is equal to

- (a) 1.5 m
- $(b) 0.5 \,\mathrm{m}$
- (c) 1 m
- (d) 2 m
- 11. The angle of depression of a car parked on the road from tep of 12m150 on high tower is 30°. The distance of the car from the tower (in metres) is
 - (a) $50\sqrt{3}$
 - (b) $150\sqrt{3}$
 - (c) $150\sqrt{2}$

(d) 75

[CBSE 2014]

- **12.** A vertical stick 30 m long casts a shadow 15 m long on the ground. At the same time a tower casts a shadow 75 m long on the ground. The height of the tower is
 - (a) 150 m

(b) 100 m

(c) 25 m

(d) 200 m

[CBSE SP 2012]

- 13. The Qutub Minar casts a shadow 150 m long and at the same time another minar casts a shadow 120 m long on the ground. If the height of the second minar is 80 m, then the height of Qutub Minar is
 - (a) 100 m

(b) 120 m

(c) 130 m

(d) 140 m

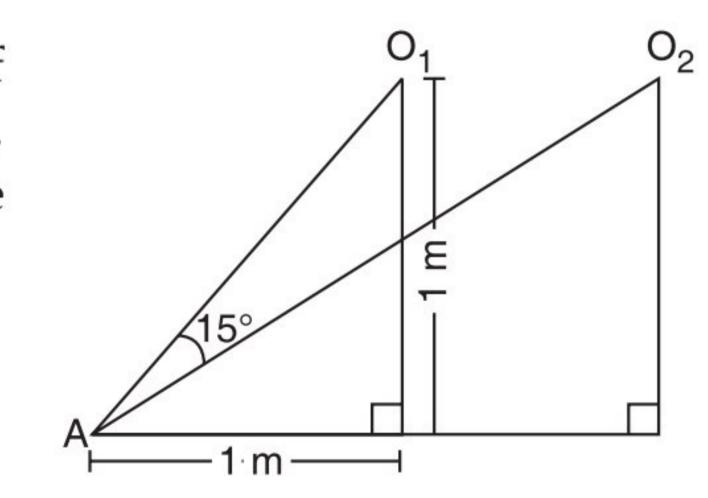
For Standard Level

- 14. A man is climbing a ladder which is inclined to the wall at an angle of 30°. If he ascends at the rate of 2 m/s then he approaches the wall at the rate of
 - (a) 2 m/s

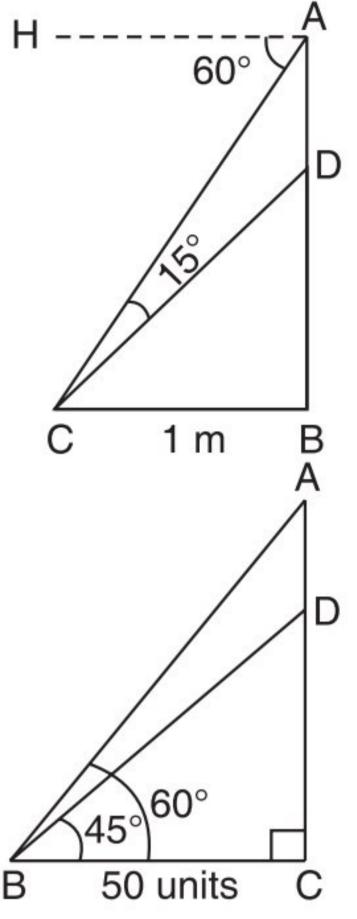
(b) $2.5 \,\mathrm{m/s}$

(c) 1 m/s

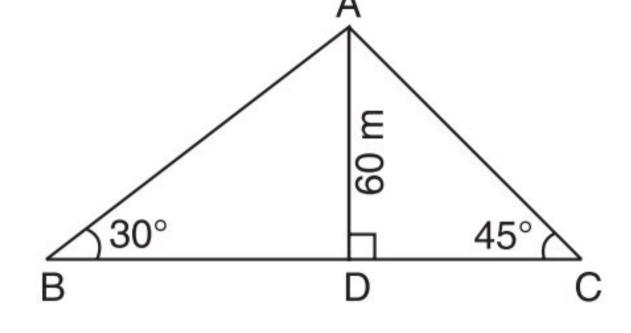
(d) $1.5 \, \text{m/s}$


[**Hint:** The ladder is inclined at 60° to the ground and $\cos 60^\circ = \frac{1}{2}$]

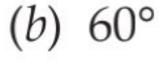
- 15. If a 1.5 m tall girl stands at a distance of 3 m from a lamp post and casts a shadow 4.5 m on the ground, then the height of the lamp post is
 - (a) 1.5 m

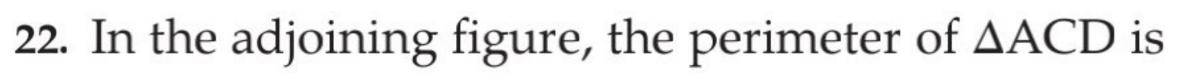

(b) 2.5 m

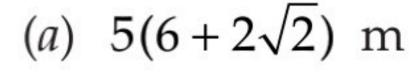
(c) 2 m


- (d) 2.8 m
- 16. The given figure shows the observation of an object at A from point O_1 and point O_2 . The angles of depression from O_1 and O_2 are respectively
 - (a) 45°, 30°
- (b) 30°, 60°
- (c) 60° , 45° (d) 75° , 45°

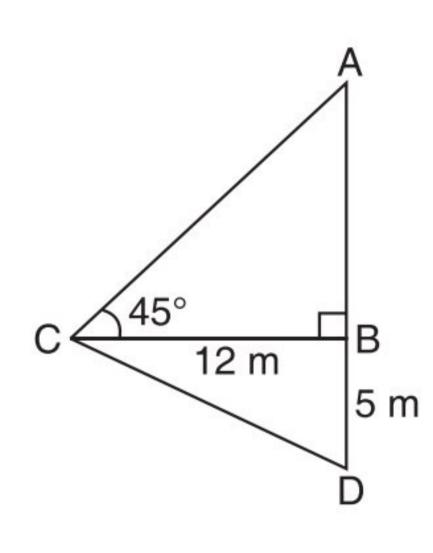
- 17. In the given figure, if BC = 1 m, then the measure of DB and the angle of depression of point C when observed from point D are respectively
 - (a) 1 m, 45°
 - (b) 1.5 m, 60°
 - (c) 0.5 m, 75°
 - (d) $2 \text{ m}, 15^{\circ}$
- 18. In the given figure, find the measure of AD.
 - (a) $50(\sqrt{3} + 1)$ units
 - (b) $50(\sqrt{3}-1)$ units
 - (c) $25(\sqrt{3}-1)$ units
 - (d) $25(\sqrt{3}+1)$ units

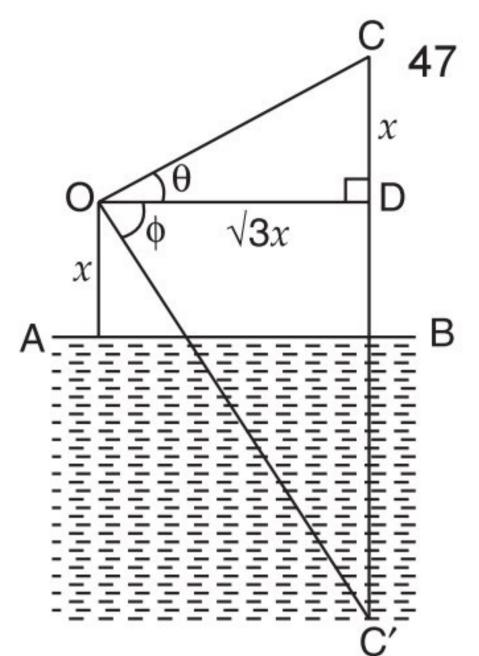

- 19. If the angles of elevation of the top of a tower from two points at a distance of 4 m and 16 m from the base of a tower and in the same line are complementary, then the height of the tower is
 - (a) 20 m
- (b) 12 m (c) 8 m
- (d) 16 m
- 20. In the given figure, two men are on the opposite side of a tower. If the height of the tower is 60 m, then the distance between them is
 - (a) $60(\sqrt{3}-1)$ m
 - (b) $30(\sqrt{3}+1)$ m
 - (c) $30(\sqrt{3}-1)$ m
 - (d) $60(\sqrt{3} + 1)$ m


21. ABCD represents a flight of stairs. AH is a horizontal through


A. If HB = BD = $\frac{3\sqrt{3}}{2}$ m and AH = 3 m, then the angle of depression of point A when observed from point D is

- 30°
- (d) 45°




(b)
$$6(5+2\sqrt{2})$$
 m

(c)
$$6(5-2\sqrt{2})$$
 m

(d)
$$5(6-2\sqrt{2})$$
 m

23. In the adjoining figure if C' is the reflection of cloud C in the lake, then the sum of the angle of elevation (θ), of point C and the angle of depression (\$\phi\$) of point C' from the same point of observation O is

- (a) 45°
- (b) 30°
- (c) 90°
- (d) 60°
- 24. If the height of a tower and distance of the point of observation from its foot both are increased by 10%, then the angle of elevation of the top
 - (a) becomes double

(b) remains unchanged

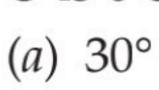
(c) becomes half

- (d) becomes one-third
- **25.** If the angles of elevation of a tower from two points at a distance of a and b from its foot and in the same straight line with it are complementary, then the height of the tower is
 - (a) $\frac{a}{h}$
- (b) ab (c) \sqrt{ab}
- $(d) \sqrt{\frac{a}{h}}$
- **26.** A man on the top of a cliff 'x' metres high observes that the angle of elevation of a tower is equal to the angle of depression of the foot of the tower. The height of the tower in metres is
 - (a) $2\sqrt{2}x$ (b) 2x (c) $\sqrt{2}x$ (d) $\frac{x}{2}$

- 27. An aeroplane when 'x' metres high passes vertically above another aeroplane at an instant when the angles of elevation of the two aeroplanes from the same point on the ground are 60° and 45° respectively. Then, the vertical distance between the two aeroplanes (in metres) is

- (a) $(3\sqrt{2}-1)x$ (b) $\frac{(\sqrt{3}-1)}{\sqrt{3}}x$ (c) $\frac{(\sqrt{3}+1)}{\sqrt{3}}x$ (d) $(3\sqrt{2}+1)x$
- 28. The angle of elevation of the top of a hill at the foot of a tower is 60° and the angle of elevation of the top of the tower from the foot of the hill is 30°. If the tower is 'x' metres high, then the height of the hill (in metres) is

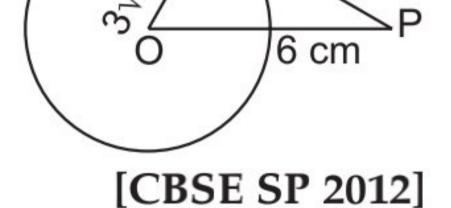
- (a) 2x (b) 3x (c) $\sqrt{3}x$ (d) $(\sqrt{3}+1)x$
- **29.** There is a small island in the middle of a 'x' metre wide river and a tall tree stands on the island. P and Q are points directly opposite to each other on the two banks, and in line with the tree. If the angles of elevation of the top of the tree from P and Q are 30° and 45°, then the height of the tree in metres is
- (a) $(2-\sqrt{3})x$ (b) $(2+\sqrt{3})x$ (c) $\frac{(\sqrt{3}-1)x}{2}$ (d) $\frac{(\sqrt{3}+1)x}{2}$
- **30.** If the height of a flagstaff is twice the height of the tower on which it is fixed and the angle of elevation of the top of the tower as seen from a point on the ground is 30°, then the angle of the top of the flagstaff as seen from the same point is
 - (a) 45°
- (b) 30°
- (c) 60°
- (d) 90°


Chapter 12: Circles

MULTIPLE-CHOICE QUESTIONS

For Basic And Standard Levels

Choose the correct answer from the given four options in the following questions:


- 1. The length of a tangent PQ, from an external point P is 24 cm. If the distance of the point P from the centre is 25 cm, then the diameter of the circle is
 - (a) 15 cm
- (b) 14 cm (c) 7 cm
- (d) 12 cm
- 2. A tangent PA is drawn from an external point P to a circle of radius $3\sqrt{2}$ cm such that the distance of the point P from O is 6 cm as shown in the figure. The value of \angle APO is

(b) 45°

(c) 60°

(d) 70°

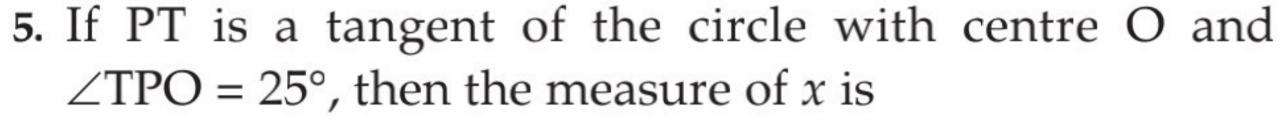
- 3. How many parallel tangents can a circle have?
 - (a) 1

(b) 2

(c) infinite

(d) none of these

[CBSE SP 2012]

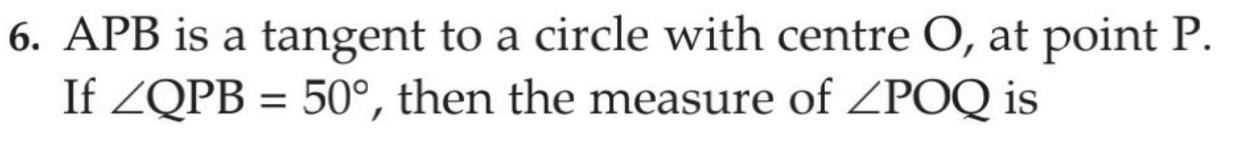

25°

- 4. In the adjoining figure, AB and AC are tangents to a circle with centre O and radius 8 cm. If OA = 17 cm, then the length of AC (in cm) is [CBSE 2012]
 - (a) $\sqrt{353}$ cm

(*b*) 15 cm

(c) 9 cm

(*d*) 25 cm

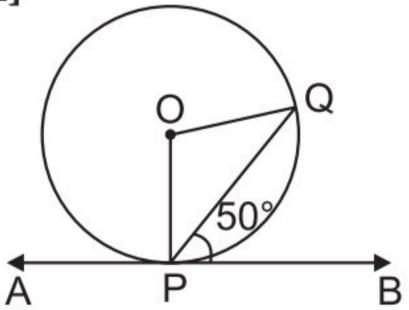


(a) 120°

(b) 125°

(c) 110°

(*d*) 115° [CBSE SP 2012]



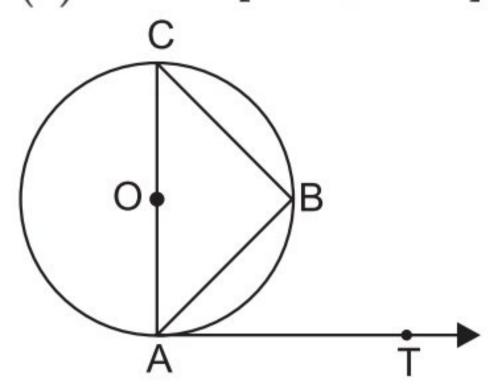
120°

100°

(c) 140°

(d) 150°

- 7. If the angle between the radii of a circle is 100°, then the angle between the tangents at the end of those two radii is
 - (a) 50°
- (b) 60°
- (c) 80°
- (d) 90° [CBSE 2012]


8. AB is a chord of a circle and AOC is its diameter such that $\angle ACB = 40^{\circ}$. If AT is the tangent to the circle at the point A, then $\angle BAT$ is equal to

(a) 45°

(b) 60°

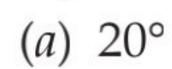
(c) 40°

(d) 50°

- 9. PQ is a tangent drawn from a point P to a circle with centre O and QOR is a diameter of the circle such \angle POR = 120°, then \angle OPQ is
 - (a) 30°
- (b) 60°
- (c) 45°
- (d) 35°

P**⊘**50°

Ρ


35°

- 10. If PQ and PR are tangents to the circle with centre O such that \angle QPR = 50°, then \angle OQR is equal to
 - (a) 25°

(b) 30°

(c) 40°

- (d) 50° [CBSE SP 2012]
- 11. If PQR is a tangent to a circle at Q whose centre is O, AB is a chord parallel to PR and \angle BQR=70°, then \angle AQB is equal to

(b) 40°

(c) 35°

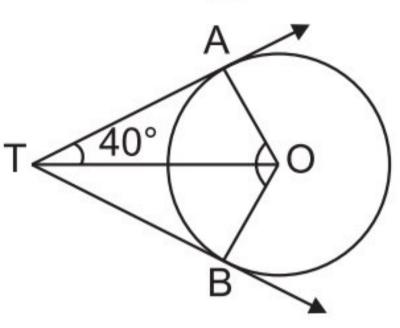
- (d) 45° [CBSE SP 2012]
- **12.** PQ and PR are tangents from an external point P, to a circle with centre O. If \angle QPO = 35°, then measures of x and y are

(b)
$$x = 35^{\circ}, y = 55^{\circ}$$

(c)
$$x = 40^{\circ}, y = 50^{\circ}$$

(d)
$$x = 45^{\circ}$$
, $y = 45^{\circ}$

- **13.** In the given figure, if $\angle ATO = 40^{\circ}$, then the measure of $\angle AOB$ is
 - (a) 80°

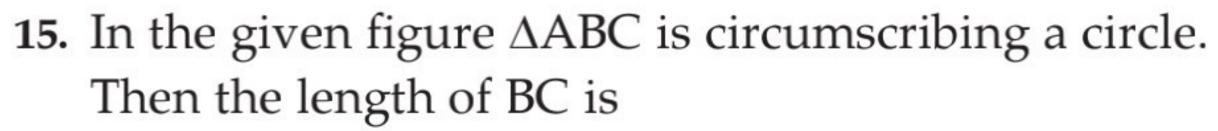

(b) 100°

(c) 90°

(0) 100

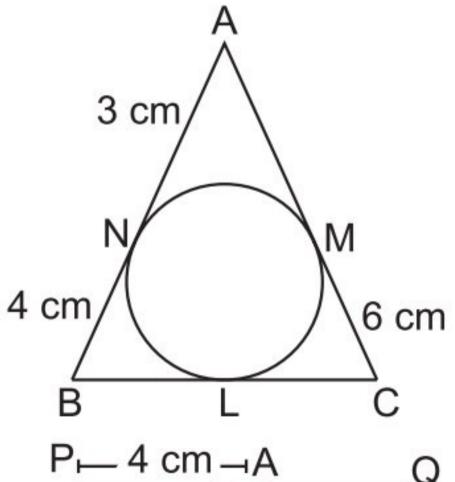
(d) 120°

[CBSE 2008]

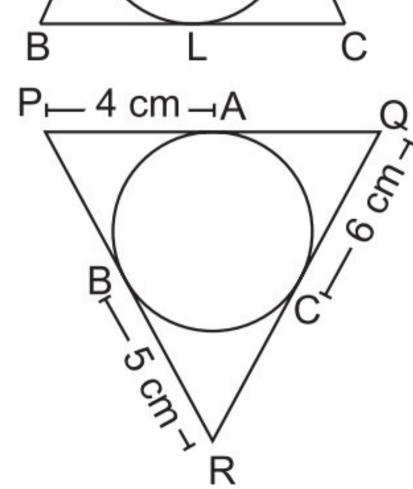


- **14.** Two concentric circles of radii 3 cm and 5 cm are given. The length of chord BC which touches the inner circle at P is equal to
 - (a) 6 cm

(b) 4 cm


(c) 10 cm

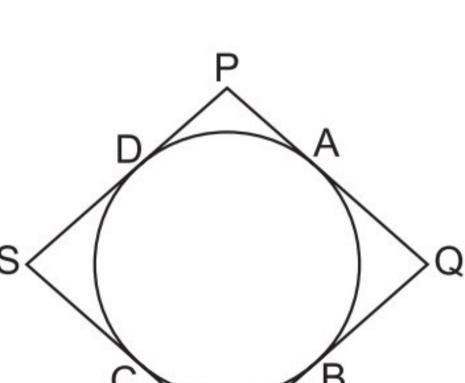
(d) 8 cm



- (a) 7 cm
- (*b*) 8 cm
- (c) 9 cm
- (*d*) 10 cm

[CBSE SP 2012]

- 16. The perimeter of ΔPQR in the given figure is
 - (a) 30 cm
 - (*b*) 15 cm
 - (c) 45 cm
 - (d) 60 cm


- 17. In the given figure, CP and CQ are tangents to a circle with centre O. ARB is another tangent touching the circle at R. If CP = 11 cm, BC = 7 cm, length of BR is
 - (a) 1 cm
 - (b) 2 cm
 - (c) 4 cm
 - (d) 3 cm
- 18. In the figure, a circle touches the side DF of Δ EDF at H and touches ED and EF produced at K and M respectively. If EK = 9 cm, then perimeter of Δ EDF (in cm) is

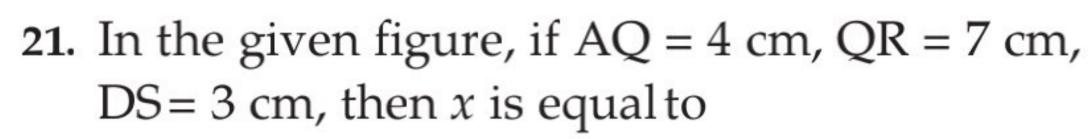
19. Quadrilateral PQRS circumscribes a circle as shown in

the figure. The side of the quadrilateral which is equal

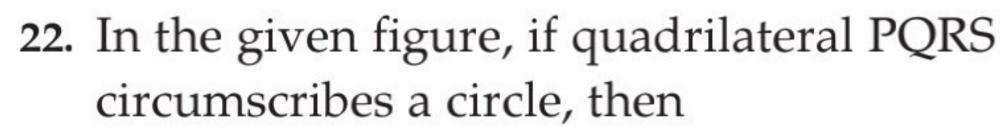
- (a) 18
- (b) 13.5
- (c) 12
- (d) 9

[CBSE SP 2012]

M

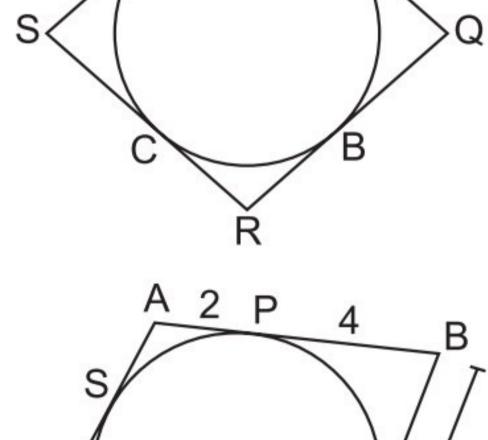

(a) PS

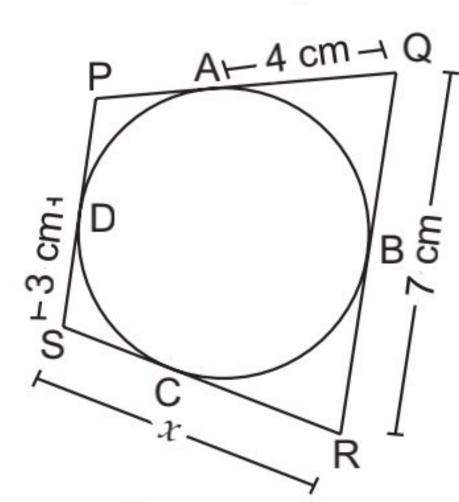
to PD + QB is

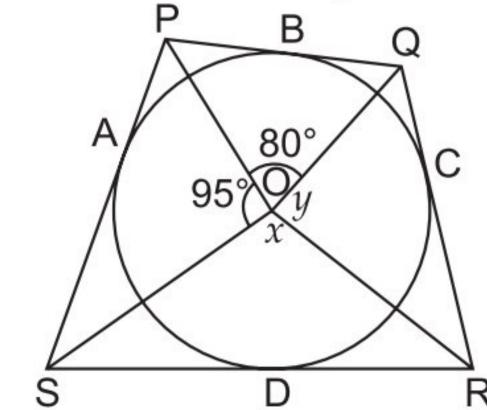

- (b) PR
- (c) PQ
- (d) QR
- 20. In the given figure, perimeter of quadrilateral ABCD is

- (b) 48 units
- (c) 28 units
- (d) 34 units

- (a) 6 cm
- (b) 8 cm
- (c) 11 cm
- (*d*) 10 cm




(a)
$$x = 95^{\circ}, y = 95^{\circ}$$


(b)
$$x = 100^{\circ}, y = 85^{\circ}$$

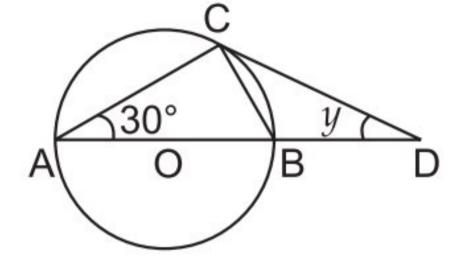
(c)
$$x = 110^{\circ}, y = 90^{\circ}$$

(d)
$$x = 85^{\circ}, y = 90^{\circ}$$

- 23. From a point A which is at a distance of 13 cm from the centre O of a circle of radius 5 cm, the pair of tangents AB and AC to the circle are drawn. Then the area of quadrilateral ABOC is
 - (a) 120 cm^2 (b) 50 cm^2 (c) 60 cm^2 (d) 80 cm^2

- 24. The maximum number of common tangents that can be drawn to two circles intersecting at two distinct points is
 - (a) 1
- (b) 2
- (c) 3
- (d) 4

For Standard Level

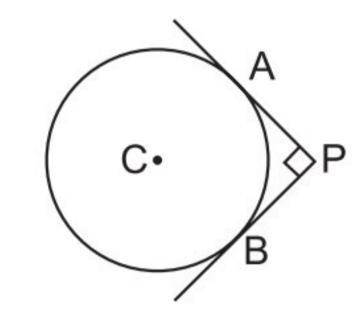

- 25. If two tangents inclined at 60° are drawn to a circle of radius 3 cm, then length of each tangent is equal to
 - (a) $3\sqrt{3}$ cm (b) 3 cm
- (c) $3\sqrt{2}$ cm (d) $2\sqrt{3}$ cm

[CBSE SP 2012]

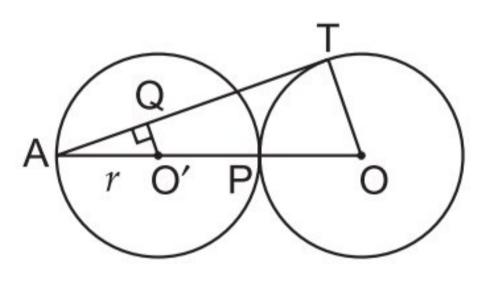
- **26.** In the figure, AB is a diameter and AC is chord of a circle such that $\angle BAC = 30^{\circ}$. If DC is a tangent, then $\triangle BCD$ is

 - (a) isosceles (b) equilateral

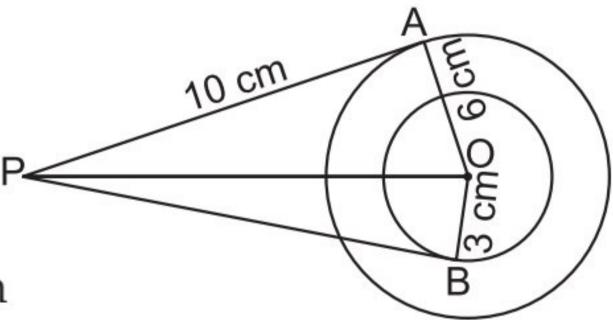
 - (c) right-angled (d) acute angled
- [CBSE SP 2012]



- 27. In the given figure, PA and PB are two tangents drawn from an external point to a circle with centre C, and radius 4 cm. If PA \perp PB, then the length of each tangent is
 - (a) 3 cm


(b) 4 cm

(c) 5 cm


(d) 6 cm [CBSE 2013]

28. Equal circles with centre O and O' touch each other at P. OO' is produced to meet circle (O',r) at A. AT is a tangent to the circle (O, r). O'Q is perpendicular to AT. Then the value of $\frac{AQ}{AT}$ is

- 29. Two concentric circles with centre O are of radii 6 cm and 3 cm. From an external point P, tangents PA and PB are drawn to these circles as shown in the figure. If AP = 10 cm, then BP is equal to

(a) $\sqrt{91}$ cm

(b) $\sqrt{127}$ cm

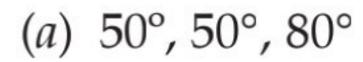
(c) $\sqrt{119}$ cm

- (*d*) $\sqrt{109}$ cm
- **30.** At one end of a diameter PQ of a circle of radius 5 cm, tangent XPY is drawn to the circle. The length of chord AB parallel to XY and at a distance of 8 cm from P is
 - (a) 8 cm

(b) 6 cm

(c) 5 cm

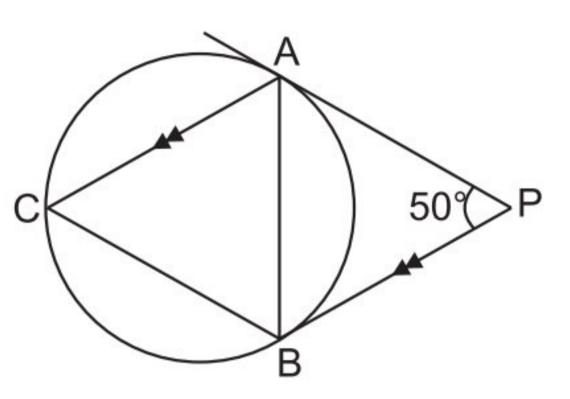
(*d*) 7 cm


12 cm

6.5 cm

8 cm

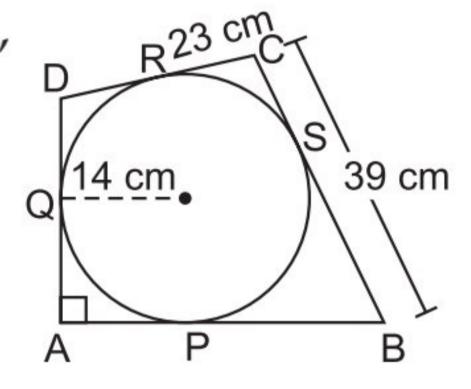
POSE


- 31. A circle is inscribed in \triangle ABC having sides 8 cm, 10 cm and 12 cm as shown in the figure. Then,
 - (a) AD = 8 cm, BE = 6 cm
 - (b) AD = 6 cm, BE = 4 cm
 - (c) AD = 5 cm, BE = 7 cm
 - (*d*) AD = 7 cm, BE = 5 cm
- 32. In the given figure, a circle touches all four sides of a quadrilateral PQRS, whose sides are PQ = 6.5 cm, QR = 7.3 cm, and PS = 4.2 cm, then RS is equal to
 - (a) 4.7 cm
 - (*b*) 5.3 cm
 - (c) 7.3 cm
 - (*d*) 5 cm
- 33. In the given figure, PA and PB are tangents to a circle from an external point P. If \angle APB=50° and AC || PB, then the measures of angles of triangle ABC are

(b) 50°, 55°, 75°

(c) 80° , 60° , 40°

(d) 65°, 50°, 65°


34. In the given figure, quadrilateral ABCD is circumscribed, touching the circle at P, Q, R and S such that $\angle DAB = 90^{\circ}$. If CR = 23 cm and CB = 39 cm and the radius of the circle is 14 cm, then the measure of AB is

(b) 39 cm

(c) 30 cm

(d) 37 cm

35. Two circles touch each other externally at P. AB is common tangent to the circles touching them at A and B. The value of \angle APB is

(a) 30°

(b) 45°

(c) 60°

(d) 90° [CBSE 2014]

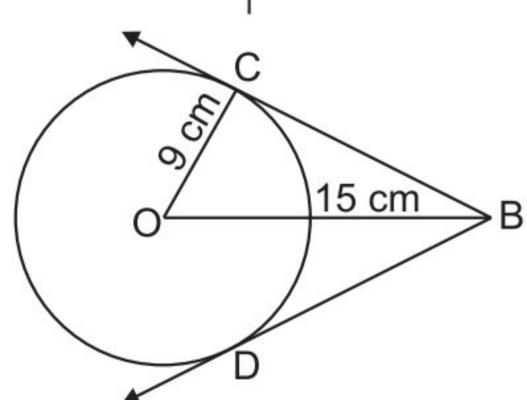
36. In the given figure, if QP = 4.5 cm, then the measure \leftarrow of QR is equal to

(a) 9 cm

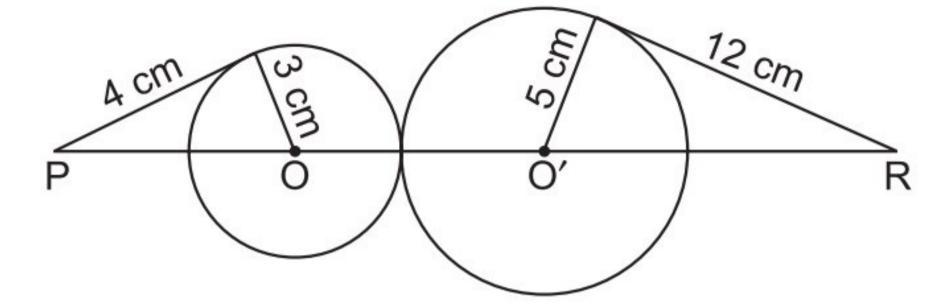
(b) 13.5 cm

(c) 15 cm

(d) 18 cm


37. In the given figure, if OC = 9 cm and OB = 15 cm, then BC + BD is equal to

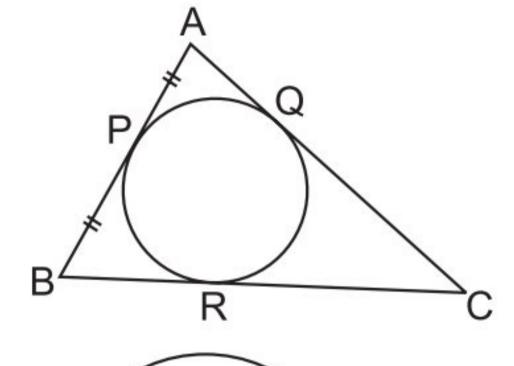
(a) 18 cm


(b) 12 cm

(c) 24 cm

(d) 36 cm

- 38. In the given figure, the length of PR is
 - (a) 20 cm
 - (b) 26 cm
 - (c) 24 cm
 - (d) 28 cm

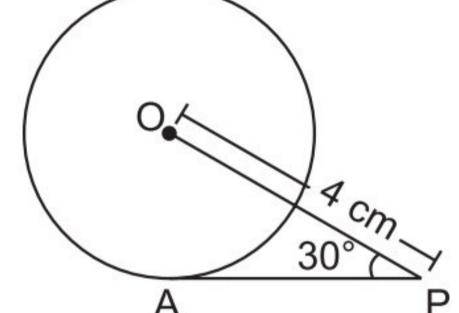


- 39. In the given figure, if AP = PB, then
 - (a) AC = AB

(b) AC = BC

(c) AQ = QC

(d) AB = BC



- **40.** AP is a tangent to the circle with centre O such that OP = 4 cm and $\angle OPA = 30^{\circ}$. Then, AP is equal to
 - (a) $2\sqrt{2}$ cm

(b) 2 cm

(c) $2\sqrt{3}$ cm

(d) $3\sqrt{2}$ cm

Chapter 13: Constructions

For Basic and Standard Levels

Choose the correct answer from the given four options in the following questions:

1.	To divide a line segment AB internally in the ratio 5 : 2, first a ray AX is drawn
	so that $\angle BAX$ is an acute angle and then points A_1 , A_2 , A_3 , are located at
	equal distances on ray AX and point B is joined to

(a) A_6 (b) A_7 (c) A_3 (d) A_2

2. To divide a line segment AB internally in the ratio 4:7 first a ray AX is drawn so that $\angle BAX$ is an acute angle and then at equal distances points are marked on ray AX such that the minimum number of these points is

 (a) 9
 (b) 10

 (c) 11
 (d) 12

3. To divide a line segment AB in the ratio 3:2, draw a ray AX such that $\angle BAX$ is an acute angle, then draw ray BY parallel to AX and then locate points A_1 , A_2 , A_3 ... and B_1 , B_2 , B_3 ... at equal distances on ray AX and BY respectively. Then the points to be joined are

(a) A_3 and B_2 (b) A_1 and B_3 (c) A_2 and B_3 (d) A_3 and B_1

4. To construct a triangle similar to a given triangle ABC with its sides $\frac{2}{3}$ of the corresponding sides of \triangle ABC, draw a ray BX such that \angle CBX is an acute angle and X lies on the opposite side of A with respect to BC. Then locate points $X_1, X_2, X_3 \ldots$ at equal distance on BX. The points to be joined in the next step are

(a) X_4 and C(b) X_1 and C(c) X_2 and C(d) X_3 and C

5. To construct a triangle similar to a given $\triangle ABC$ with its sides $\frac{7}{5}$ of the corresponding sides of $\triangle ABC$, draw a ray BX such that $\angle CBX$ is an acute angle and X is on the opposite side of A with respect to BC. Then, locate points X_1 , X_2 , X_3 . . . at equal distances on BX. The points to be joined in the next step are

(a) X_7 and C(b) X_5 and C(c) X_2 and C(d) X_{12} and C

6. If two tangents are drawn at the end points of two radii of a circle which are inclined at 120° to each other, then the pair of tangents will be inclined to each other at an angle of

	(a)	100°	(b) 60°	(c)	90°	(d)	120°	
7.	То	construct a cycl	ic quadrilate	ral ABCD i	n which	$\Delta B = 90^{\circ}$, i	f a circle o	n which
	poi	nts A, B, C and	D lie, has to	be drawn	, then th	ne centre of	this circle	is
	(a)	the mid-point	of diagonal	AC.				
	(b)	the mid-point	of diagonal	BD.				
		the point of in		0				
		a point which						
8.	is re	draw a pair of equired to draw inclined at an a	v tangents at					
		45°	0	(b)	120°			
	(c)	60°		(d)	90°			
9.	ang of t	draw a pair of le of 60°, it is r he circle, which 135° 60°	equired to d	raw tange	nts at th		ts of the t	
or	Sta	ndard Level						
10.	x° ,	draw a pair of it is required to le, the angle be	o draw tang	ents at the				0
		90° – x°		92.5	90° + x	.0		
	. ,	180° − <i>x</i> °		(d)	180° +	x°		
11.	a ra	divide line seg y AX so that z al distances su	∠BAX is an a	cute angle	and th	en mark po	oints on ra	980 IS
	(a)	greater of m a	nd n	(b)	m + n			
	(c)	m + n - 1		(<i>d</i>)	mn			
12.	-	ou draw a pair n the angle bet	0			rom point P	such that	OP = 2r
	(a)	90°		(b)	30°			
	(c)	60°		(<i>d</i>)	45°			
	-				1	1.0		

13. To draw tangents to each of the circle with radii 3 cm and 2 cm from the centre of the other circle, such that the distance between their centres A and B is 6 cm, a perpendicular bisector of AB is drawn intersecting AB at M. The next step is to draw

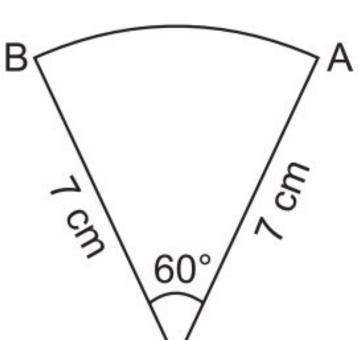
- (a) a circle with AB as diameter
- (b) a circle with AM as diameter
- (c) a circle with MB as diameter
- (*d*) extend AB to P such that BP = MB and draw a circle with MP as diameter

- **14.** To draw tangents to a circle of radius 'p' from a point on the concentric circle of radius 'q', the first step is to find
 - (a) mid-point of q
 - (b) mid-point of p
 - (c) mid-point of q r
 - (d) mid-point of p + q
- 15. To draw a tangent at point B to the circumcircle of an isosceles right $\triangle ABC$ right angled at B, we need to draw through B
 - (a) a line parallel to AC
 - (b) a line perpendicular to AB
 - (c) a line perpendicular to BC
 - (d) a line inclined at 60° to AB

Chapter 14: Areas Related to Circles

MULTIPLE-CHOICE QUESTIONS —

or	Basic and Stand	lard Levels				
Cho	Choose the correct answer from the given four options in the following questions:					
1.	If the perimeter o	f a semi-circular pro	otractor is 36 cm, th	nen its diameter is		
	(a) 10 cm	(b) 12 cm	(c) 14 cm	(d) 16 cm		
				[CBSE SP 2012]		
2.	If the circumferer	nce of a circle exceed	ls its diameter by 10	6.8 cm, then the radius		
	of the circle is					
	(a) 3.92 cm	(b) 3 cm	(c) 3.5 cm	(d) 3.82 cm		
3.				Then, the diameter of umferences of the two		
	(a) 56 cm	(b) 52 cm	(c) 48 cm	(d) 50 cm		
4.		ce of a circle is 44 of the circumference	•	should the radius be		
	(a) 3 cm	(b) 3.5 cm	(c) 4 cm	(d) 7 cm		
5.	If the radius of a	circle is 3.5 cm, ther	the perimeter of the	he semicircle is		
	(a) 16 cm	(b) 21 cm	(c) 18 cm	(d) 20 cm		
6.	The perimeter of	a quadrant of a circ	le of radius $\frac{7}{2}$ cm	is		
	(a) 7.5 cm	(b) 12.5 cm	(c) 7.5 cm	(d) 3.5 cm		
				[CBSE SP 2012]		
7.	The perimeter (in	cm) of a square cire	cumscribing a circle	e of radius a cm is		
	(a) 8a	(b) 4a	(c) 2a	(<i>d</i>) 16 <i>a</i> [CBSE 2011]		
8.	If the difference b	etween the circumfe	erence and radius o	f a circle is 37 cm, then		
	using $\pi = \frac{22}{7}$ the	circumference (in c	m) of the circle is			
	(a) 154	(b) 44	(c) 14	(d) 7 [CBSE 2013]		
9.	If the area of a cir	cle is 154 cm ² , then	its perimeter is			
	(a) 33 cm		(b) 21 cm			
	(c) 42 cm		(d) 44 cm			
10.	•		metres) covered by	y a wheel of diameter		
	35 cm, in one rev	olution is				
	(a) 2.2	(b) 1.1	(c) 9.625	(<i>d</i>) 96.25 [CBSE 2013]		


11.	The circumference	e of a circle is 44 cm	n. Then, the area of	the circle is
	(a) 276 cm^2		(b) 44 cm^2	
	(c) 176 cm^2		(d) 154 cm^2	[CBSE SP 2012]
12.	If the circumferen	ce of a circle increa	ses from 2π to 4π th	hen its area is
	(a) halved	(b) doubled	(c) tripled	(d) four times
				[CBSE SP 2012]
13.	The area of a squa	are that can be insci	ribed in a circle of r	radius 10 cm is
	(a) $200\sqrt{2}$ cm ²	(b) 200 cm^2	(c) 256 cm^2	(<i>d</i>) $100\sqrt{2}$ cm ²
14.	If the areas of two	circles are in the ra	atio 9:16, then the	ratio of the perimeters
	of their semicircle	es is		
	(a) $3:4$	(b) 4:3	(c) 3:2	(<i>d</i>) 2:3
15.	If the circumferer	nce of a circle is equ	ual to the perimeter	r of a square, then the
	ratio of their areas	s is		
	(a) $22:7$	(b) 14:11	(c) 7:22	(d) 7:11
				[CBSE SP 2012]
16.				les of diameters 10 cm
		he diameter of the l	arger circle (in cm)	
	(a) 34	(b) 26	(c) 17	(d) 14 [CBSE SP 2012]
17.		•	equal to twice its c	ircumference then the
	diameter of the ci	rcle is		
	(a) 4 units		(b) π units	[CDCE 2011]
	(c) 8 units		(d) 2 units	[CBSE 2011]
18.	In the given figure	e if the length of cho	ord AB is $7\sqrt{2}$ cm,	then
		he quadrant BPAO	18	12°C2
	(a) 25 cm			/3 /
	(b) 50 cm			
	(c) 75 cm (d) 28 cm			O B 43 units
10	` /	ula a diamana na 1 a 4 a a a la	· · · · · · · · · · · · · · · · · · ·	
19.	the figure is	the given plot as sh	nown in	nnits
	(a) 260 units	(b) 240 units	4	4
	(<i>a</i>) 200 units (<i>c</i>) 130 units	(d) 180 units		43 units
20			rushama AED	A 14 cm D
20.	•	the shaded region, d ABCD is a rectang		E E
	(a) 98 cm	a MDCD is a rectarig	510 13	\$ E
	(b) 84 cm			\$ E 9
	(c) 49 cm			
	(d) 76 cm		[CBSE 2008]	
	(n) / O CIII		[CD3L 2000]	14 cm — 10

- 21. The perimeter of the sector OAB is
 - (a) $\frac{64}{3}$ cm

(b) 26 cm

(c) $\frac{64}{5}$ cm

(d) 19 cm

- 22. An arc of length 15.7 cm subtends a right angle at the centre of the circle. Then, the radius of the circle is [Use $\pi = 3.14$]
 - (a) 20 cm
- (b) 10 cm
- (c) 15 cm
- (d) 12 cm
- 23. If an arc forms 90° at the centre O of the circle, then the ratio of its length to the circumference of the circle is

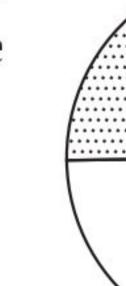
 - (a) 3:4 (b) 1:3 (c) 1:4 (d) 2:3
- 24. A pendulum swings through an angle of 36° and describes an arc 13.2 cm in length. Then, the length of the pendulum is
 - (a) 21 cm
- (b) 22 cm (c) 25 cm
- (d) 24 cm
- **25.** The minute hand of a clock is $\sqrt{21}$ cm long. Then, the area described by the minute hand on the face of the clock between 7 am and 7:05 am is

- (a) 7.5 cm^2 (b) 10.5 cm^2 (c) 5.5 cm^2 (d) 2.5 cm^2
- **26.** In a circle of radius 21 cm, if the angle subtended by the arc at the centre is 60°, then the area of the sector is
 - (a) 250 cm^2 (b) 231 cm^2 (c) 230 cm^2 (d) 131 cm^2

- 27. If the perimeter of a sector of a circle of radius 6.5 cm is 29 cm, then the area of the sector is

- (a) 58 cm^2 (b) 52 cm^2 (c) 25 cm^2 (d) 56 cm^2
- 28. If chord PQ of a circle of radius 10 cm makes a right angle at the centre of the circle, then the area of the minor segment is [Take $\pi = 3.14$]
 - (a) 29.5 cm^2

(b) 30.5 cm^2


(c) 32.5 cm^2

(d) 28.5 cm^2

- **29.** If an arc forms 90° at the centre O of the circle, then the ratio of its length to the circumference of the circle is

 - (a) 3:4 (b) 1:3 (c) 1:4
- (d) 2:3
- **30.** In the given figure, three sectors of a circle of radius 7 cm, making angles of 60°, 80°, 40° at the centre are shaded. The area of the shaded region (in cm²) is [Using $\pi = \frac{22}{7}$]

(a) 77

(b) 154

(c) 44

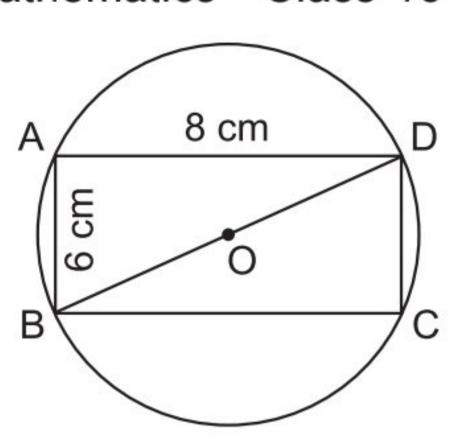
- [CBSE 2012]
- 31. The area of the largest triangle that can be inscribed in a semicircle of radius *r* is
 - (a) $2r \text{ cm}^2$

(b) $r^2 \text{ cm}^2$

(c) $r \text{ cm}^2$

(d) \sqrt{r} cm²

[NCERT EXEMPLAR]


32. In the given figure, a circle circumscribes a rectangle. Then the ratio of the area of the circle to the area of the rectangle is

(b)
$$48\pi:25$$

(c)
$$25\pi:48$$

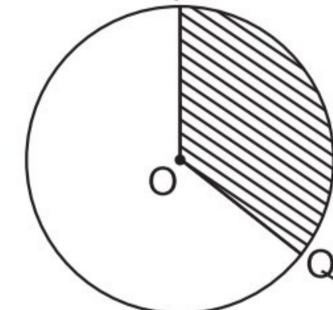
(*d*)
$$13\pi:25$$

33. If the areas of two circles are in the ratio 4 : 9, then the ratio of the perimeter of their semicircles is

(a)
$$2:3$$

(b)
$$3:2$$
 (c) $1:2$ (d) $1:3$

34. The area of a ring shaped region enclosed between two concentric circles of radii 20 cm and 15 cm is


(a)
$$750 \text{ cm}^2$$

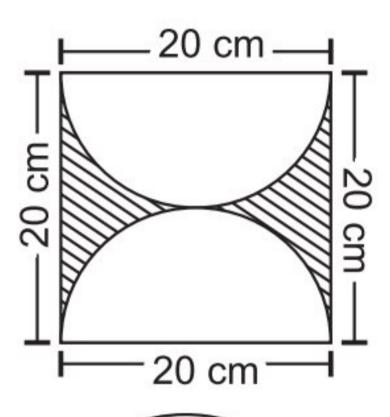
(b)
$$250 \text{ cm}^2$$

(c)
$$500 \text{ cm}^2$$

(d)
$$550 \text{ cm}^2$$

35. In the given figure if the area of the shaded sector POQ is of the area of the whole circle, then the measure of

 $\angle POQ$ is


36. The area of the shaded region in the adjoining figure is

(a)
$$\frac{700}{6}$$
 cm²

(b)
$$\frac{600}{7}$$
 cm²

(c)
$$\frac{1300}{6}$$
 cm²

(d)
$$\frac{1300}{7}$$
 cm²

37. The ratio of the areas of sector I and sector II is

(a)
$$5:2$$

$$(c)$$
 5:3

150° 60°

120°

- 38. In the given figure, the area of the shaded sector in terms of π is
 - (a) $3\pi \text{ cm}^2$

(b) $9\pi \text{ cm}^2$

(c) $7\pi \text{ cm}^2$

(d) $6\pi \text{ cm}^2$

For Standard Level

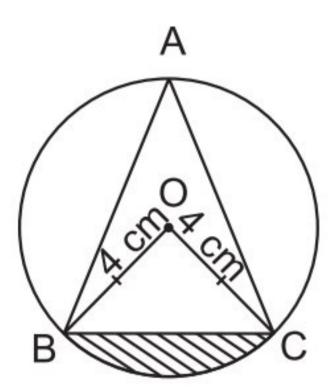
39. If the area of a square is same as the area of a circle, then the ratio of their perimeters (in terms of π) is

(a)
$$\pi : \sqrt{3}$$

(b) 2:
$$\sqrt{\pi}$$

(c)
$$3:\pi$$

(a)
$$\pi : \sqrt{3}$$
 (b) $2 : \sqrt{\pi}$ (c) $3 : \pi$ (d) $\pi : \sqrt{2}$


- **40.** If the diameters of two circles are 12 cm and 16 cm, then the diameter of the circle having area equal to the sum of areas of the two circles is
 - (a) 24 cm
- (b) 18 cm (c) 20 cm (d) 15 cm

- 41. The ratio of the areas of a circle and an equilateral triangle whose diameter and a side are respectively equal is
- (a) $\pi : \sqrt{2}$ (b) $\pi : \sqrt{3}$ (c) $\sqrt{3} : \pi$ (d) $\sqrt{2} : \pi$
- **42.** If the sum of areas of two circles with radii r_1 and r_2 is equal to the area of a circle of radius r, then

- (a) $r_1^2 + r_2^2 > r$ (b) $r_1^2 + r_2^2 = r^2$ (c) $r_1^2 + r_2^2 < r_2^2$ (d) $r_1^2 r_2^2 > r^2$
- **43.** In the given figure, \triangle ABC is an equilateral triangle inscribed in a circle of radius 4 cm and centre O. Then, the area of the shaded region is
 - (a) $\frac{4}{3} \left(4\pi 3\sqrt{3} \right) \text{ cm}^2$

(b) $4(4\pi - \sqrt{3}) \text{ cm}^2$

- (c) $\frac{3}{4} \left(4\pi 3\sqrt{3} \right) \text{ cm}^2$
- $(d) \quad \frac{1}{4} \left(4\pi \sqrt{3} \right) \text{cm}^2$

- **44.** If the perimeter of a square and the circumference of a circle are equal, then
 - (a) area of the square > area of the circle
 - (b) area of the square = area of the circle
 - (c) area of the square < area of the circle
 - (*d*) no definite relationship exists between the areas of the square and the circle.

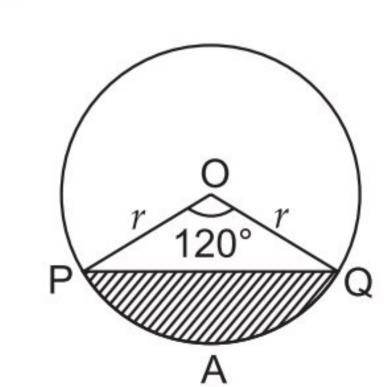
[NCERT EXEMPLAR]

- **45.** If the perimeter of a square is equal to the perimeter of a circle, then the ratio of their areas is
 - (a) 13:22
- (b) 14:11
- (c) 22:13
- (d) 11:14

[NCERT EXEMPLAR]

- **46.** The area of a circle is $64 \,\pi$ cm². Its circumference is
 - (a) 7π cm
- (b) $16\pi \text{ cm}$ (c) $14\pi \text{ cm}$
- (d) 21π cm
- 47. It is proposed to build a single circular park equal in area to the sum of areas to two circular parks of diameters 16 m and 12 m in a locality. The radius of the new park would be
 - (a) 10 m
- (b) 15 m
- (c) 20 m
- (d) 24 m

[NCERT EXEMPLAR]

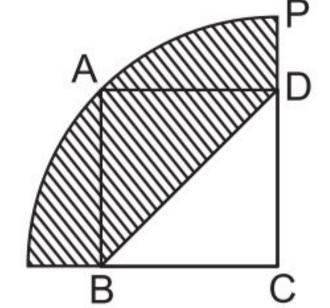

- **48.** The area of a square that can be inscribed in a circle of radius 10 cm is
 - (a) $200\sqrt{2}$ cm² (b) 200 cm² (c) 256 cm²
- (d) $100\sqrt{2} \text{ cm}^2$
- **49.** The area of the circle that can be inscribed in a square of side 10 cm is
 - (a) $40\pi \text{ cm}^2$ (b) $30\pi \text{ cm}^2$ (c) $100\pi \text{ cm}^2$ (d) $25\pi \text{ cm}^2$

- 50. In the given figure, area of segment PAQ is
 - (a) $\left(\frac{\pi}{3} \frac{\sqrt{3}}{2}\right)r^2$

(b) $\left(\frac{\pi}{3} - \frac{\sqrt{3}}{4}\right)r^2$

(c) $\left(\frac{\pi}{3} - \frac{2}{\sqrt{3}}\right)r^2$

(d) $\left(\frac{\pi}{3} - \frac{4}{\sqrt{3}}\right)r^2$

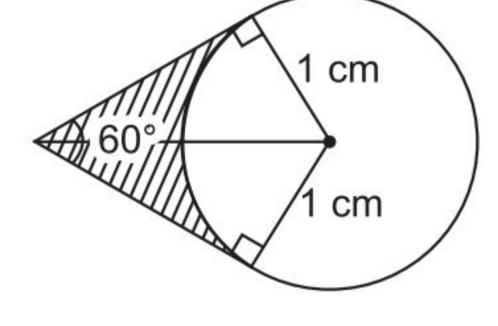

- **51.** On increasing the diameter of a circle by 40%, its area is increased by
 - (a) 96%
- (b) 40% (c) 80%
- (d) 48%
- **52.** The area enclosed between a circle and a rectangle of sides 4 cm and 3 cm inscribed in the circle [Taking $\pi = 3.14$] is
 - (a) 7.625 cm^2 (b) 7.5 cm^2 (c) 7.975 cm^2 (d) 7.3 cm^2

- 53. The quarter circles as shown has centre C and radius 10 units. If the perimeter of the rectangle ABCD is 26 units, then the perimeter of the shaded region is
 - (a) $(5\pi + 18)$ units

(b) $(5\pi + 20)$ units

(c) $(5\pi + 19)$ units

(d) $(5\pi + 17)$ units

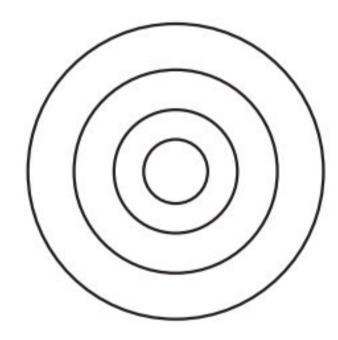

- **54.** If the areas of two concentric circles are 962.5 cm² and 1386 cm² respectively, then the width of the ring is

 - (a) 3.1 cm (b) 2.9 cm
- (c) 3.5 cm
- (*d*) 3.2 cm
- **55.** Area of sector of a circle bounded by an arc of length 6π cm is equal to 24π cm². Find the radius of the circle.
 - (a) 12 cm
- (b) 16 cm (c) 8 cm
- (*d*) 10 cm
- **56.** In the given figure, if the radius of the circle is 1 cm and $\angle A = 60^{\circ}$, then the area of the shaded region is
 - (a) $\left(\sqrt{3} \frac{\pi}{3}\right) \text{cm}^2$

(b) $\left(\sqrt{3} + \frac{\pi}{3}\right) \text{cm}^2$

(c) $\left(\frac{\pi}{\sqrt{3}} - 3\right) \text{cm}^2$

(d) $\left(\frac{\pi}{\sqrt{3}} + 3\right) \text{cm}^2$



- 57. The radius of a circle is 20 cm. It is divided into four parts of equal area by drawing three concentric circles inside it. Then the radius of the largest of the three concentric circles drawn is
 - (a) $10\sqrt{5}$ cm

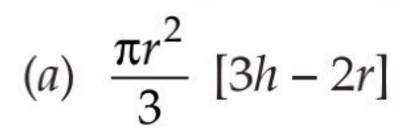
(b) $10\sqrt{3}$ cm

(c) 10 cm

(*d*) $10\sqrt{2}$ cm

For Basic and Standard Levels

Chapter 15: Surface Areas and Volumes


MULTIPLE-CHOICE QUESTIONS —

Cho	ose the correct ans	swer from the giver	n four options in th	e following questions:
1.	The shape of a bel	lan (rolling pin) as s	shown in the figure	is the combination of
	(a) three cylinder	s and two hemisph	eres	
	(b) three hemisph	neres and two cyline	ders	
	(c) a cylinder and	two hemispheres	<u> </u>	
	(d) two cylinders	and two hemisphe	res	
2.	The edge of a cub	e whose volume is	$8x^3$ is	
	(a) 4x	(<i>b</i>) 2 <i>x</i>	(c) x	(d) $\frac{x}{2}$
3.	Total surface area	of a cube is 216 cm	n ² , its volume is	
		(b) 196 cm^3	100	(d) 216 cm^3
				[CBSE SP 2012]
4.	If the diagonal of	a cube is 17.32 cm,	then its volume (ta	king $\sqrt{3} = 1.732$) is
	(a) 1000 cm^3	(b) 1732 cm^3	(c) 173.2 cm^3	(d) 100000 cm^3
5.	The edge of a cub $8 \text{ cm} \times 4 \text{ cm} \times 2 \text{ c}$		s equal to that of a	cuboid of dimensions
	(a) 6 cm		(c) 2 cm	(d) 8 cm
6.				$^{\prime}$ cm \times 6 cm that can be
0.		dimensions 8 m × 7		
	(a) 10000000		(b) 100000	
	(c) 1000000		(d) 10000	
7.	If the volume of a	7 cm high right circ	cular cylinder is 448	π cm ³ , then the radius
	is equal to			
	(a) 10 cm	(b) 4 cm	(c) 6 cm	(d) 8 cm
8.	The curved surface	ce area of a solid cyl	linder is one-third o	of its total surface area.
	If the radius of th	e cylinder is 2.5 cm	, then its height is e	equal to
	(a) 1.5 cm	(b) 0.675 cm	(c) 2 cm	(d) 1.25 cm
9.	The number of ci	rcular plates each	of radius 7 cm and	thickness 0.5 cm that
	•		r to form a solid rig	ght circular cylinder of
	volume 1925 cm ³	is		
	(a) 25	(b) 50	(c) 12	(d) 75

10.	. Volume of a cylindrical wire of radius 1 cm is 440 cm ³ . It is cut into three unequal segments. If the lengths of two cut segments are 6 cm and 8 cm, then the length of the third segment is				
		(b) 126 cm	(c) 120 cm	(d) 240 cm	
11.	If two cylinders o	f equal volumes ha	ve their radii in the	ratio $\sqrt{2}$: 1, then the	
	ratio of their heigh	hts is			
	(a) $1:1$	(b) 1:2	(c) 1:4	(<i>d</i>) 1:3	
12.	If the surface area	of a sphere is 144π	, then its radius is		
	(a) 6 cm	(b) 8 cm	(c) 12 cm	(d) 10 cm	
13.	If the ratio of the volumes is	surface areas of tw	o spheres is 4:9,	then the ratio of their	
	(a) 16:81	(b) 4:9	(c) 2:3	(d) 8: 27	
14.	If the volume of a	hemisphere is 18π	cm ³ , then its radiu	s is	
	(a) 12 cm	(b) 3 cm	(c) 6 cm	(d) 4.5 cm	
15.	The volume of a c	cone is 1570 cm^3 . If	its base area is 314	cm ² , then its height is	
	(a) 10 cm			(d) 15 cm	
16.	The radius of the volume 729 cm ³ is		lar cone that can b	e cut out of a cube of	
	(a) 4 cm	(b) 4.5 cm	(c) 3.5 cm	(d) 3 cm	
17.	together along the	eir bases, then the s	urface area of the s	•	
	(a) $325\pi \text{ cm}^2$	(b) $272\pi \text{ cm}^2$	(c) $295\pi \text{ cm}^2$	(d) $300\pi \text{ cm}^2$	
18.	4:5, then the ratio	o of their heights is		o of their diameters is	
		(b) 16:25			
19.				other cone. If the slant atio of their radii is	
	(a) 4:1	(b) 2:1	(c) 3:1	(<i>d</i>) 5:1	
20.	If three cubes each surface area of the	,	ined together to fo	rm a cuboid, then the	
	(a) $11a^2$	(b) $9a^2$	(c) $14a^2$	(d) $7a^2$	
21.	The volume of the is	e largest sphere that	can be carved out	of a cube of side 21 cm	
	(a) 4410 cm^3		(b) 6615 cm^3		
	(c) 5292 cm^3		(d) 4851 cm^3		
22.	also equal. If 'r' ar		ly the radius of the	mes. Their heights are base and height of the	
	(a) πr^2	(b) πr	(c) πr^3	(d) πh^2	

Mati	nematics - Class 10)			65
23.	height is 3 cm and		cast	•	cylinder is 'r' and its cular cone of the same
	(a) 6 cm	(b) 9 cm	(c)	12 cm	(d) 7.5 cm
24.		•			3 : 4 and their heights ylinder to that of cone
	(a) $7:5$	(<i>b</i>) 5:7	(c)	8:9	(d) 9:8 [CBSE SP 2012]
25.	1	of radius 8 cm is mel the number of sphe			spherical balls each of
	(a) 32	(b) 24	(c)	64	(d) 16
26.	base radius 1 m a	nd height 4 m is			ndrical log of wood of
	(a) $\frac{8}{3} \pi \text{ m}^3$	(b) $\frac{10}{3}$ m ³	(c)	$\frac{16\pi}{3}$ m ³	$(d) \frac{4}{3} \pi \mathrm{m}^3$
					[CBSE SP 2012]
27.	•	vith total surface are face area of any one			into two hemispheres, is
	(a) 48 cm^2	(b) 60 cm^2	(c)	24 cm^2	(d) 36 cm^2
28.		of the hemisphere. I	f the	e height of the c	with the same base cone is h , then value of (d) 3
	(u) \angle	(0) 1	(0)	2	(u) \circ
29.		nds of a frustum of a n ³ of the frustum of			m are r_1 cm and r_2 cm.
	(a) $\frac{1}{3}\pi h \left[r_1^2 - r_2^2\right]$	$-r_1r_2$]	(b)	$\frac{1}{3} \pi r \left[r_1^2 + r_2^2 \right]$	$-r_1r_2$]
	(c) $\frac{1}{3}\pi h \left[r_1^2 - r_2^2\right]$	$+ r_1 r_2$]	(<i>d</i>)	$\frac{1}{3} \pi h \left[r_1^2 + r_2^2 \right]$	$+ r_1 r_2$]
30.	wastage takes pla	ersion of a solid frace), the volume of	the	new shape will	
	(a) be doubled			remain unalter	red
	(c) be halved		\ /	increase	
31.	If the surface area	as of two parts are			same radius) above it. o of its radius and the
	slant height of the (a) 1:4	(b) 4:1	(c)	2:1	(d) 1:2
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		(0)		(a) 1 . 2 [CBSE SP 2011]

32. The capacity of the cylindrical vessel with the hemispherical bottom portion raised upwards (as shown in the figure) is

(b)
$$\frac{\pi r^2}{3} [3h + 2r]$$

(c)
$$\frac{\pi r^2}{2} [2h - 3r]$$

(d)
$$\frac{\pi r^2}{2} [2h + 3r]$$

- 33. If a solid right circular cone of height 24 cm and base radius 6 cm is melted and recast in the shape of a sphere, then the radius of the sphere is
 - (a) 6 cm
- (b) 4 cm (c) 8 cm
- (d) 12 cm

[CBSE SP 2012]

- **34.** The radii of the circular ends of a bucket of height 40 cm are 24 cm and 15 cm. The slant height (in cm) of the bucket is
 - (a) 51

- [CBSE 2012]
- 35. The radii of the circular ends of a frustum are 6 cm and 14 cm. If its slant height is 10 cm, then its vertical height is
 - (a) 6 cm (b) 8 cm (c) 4 cm (d) 7 cm

- 36. A hollow cylindrical pipe is 21 cm long. If its outer and inner diameters are 10 cm and 6 cm respectively, then the volume of the metal used in making the pipe is Take $\pi = \frac{22}{7}$

- (a) 1135 cm^3 (b) 1086 cm^3 (c) 1056 cm^3 (d) 1094 cm^3

For Standard Level

- 37. The curved surface area of a cone is 2310 cm². It its slant height is 35 cm, then its vertical height is
 - (a) 42 cm
- (b) 21 cm (c) 28 cm (d) 14 cm
- 38. If the height and base radius of a cone, each is increased by 50%, then the ratio between the volume of the given cone and the new cone is
 - (a) 8:27 (b) 27:8 (c) 4:9 (d) 2:3

- 39. The radius of the base and height of a cone are 4 cm and 9 cm respectively. If its height is decreased and base radius is increased each by 2 cm, then the ratio of the volume of the new cone to that of the original cone is
 - (a) 5:2
- (b) 7:4 (c) 9:2 (d) 8:3

- **40.** If the perimeters of the bases of two right circular cones are in the ratio 3 : 4 and their volumes are in the ratio 9: 32, then the ratio of their heights is
 - (a) 1:3
- (b) 2:1 (c) 1:2 (d) 3:1
- 41. A cuboidal ice cream brick of dimensions 22 cm \times 20 cm \times 16 cm is to be distributed among some children by filling ice cream cones of radius 2 cm and height 7 cm up to its brim. How many children will get the ice cream cones?
 - (a) 252
- (b) 240
- (c) 285
- (d) 236

42.	a solid cylinder	•	cm and base rad	is hollowed out from ius is 6 cm, then the
43.	3 cm and 5 cm re		nelted and recast in	ow spherical shell are nto a solid cylinder of
	(a) 28 cm	(b) 21 cm	(c) 7 cm	(d) 14 cm
44.	20 NO NO NO NO NO		,	elting a solid metallic iameter of each sphere
	(a) 1 cm	(b) 3 cm	(c) 2 cm	(d) 2.5 cm
45.	is approximately	equal to		om a cube of 7 cm side
2 100	(a) 195.7 cm^3		(c) 189.8 cm^3	
46.	ends are 18 cm an	t a trustum of a cond d 6 cm. Then, the c (b) 90 cm ²	urved surface area	of the frustum is (d) 45 cm ²
47				made from 5 m wide
1/.		h of the canvas used		made mom o m wide
	(a) 115 m	(b) 110 m	(c) 95 m	(d) 100 m
48.	hemisphere is	•		tal surface area of the
	(a) 4168 cm^2	(b) 4062 cm^2	(c) 4000 cm^2	(d) 4158 cm^2
49.		io of the volume of	3	red, keeping the height btained to the volume
	(a) $1:2$	(b) 2:1	(c) 1:4	(d) 4:1 [CBSE 2012]
50.		•		o a height of 3 m and
		The total height of the rved surface area is		d radius of the base is
		(b) $350\pi \text{ m}^2$		(d) $329\pi \text{ m}^2$
51.				sing through the mid-
				er part and the cone is
	(a) 1:8	(<i>b</i>) 1:5	(c) $1:7$	(d) 1:6 [CBSE 2012]
52.		h. If 8 cm of standir	-	e canal is flowing with then the area irrigated
	(a) 40.5 hectares		(c) 30 hectares	(d) 30.8 hectares.

53.	3. Marbles of diameter 1.4 cm are dropped into a cylindrical beaker of radius					
				nat should be dropped		
	(a) 57	that the water leve (b) 74	(c) 58	(d) 75		
_,		` /				
54.	_			. If the surface areas of		
	part is	equal, then the ratio	or its radius and th	he height of its conical		
	(a) $1:\sqrt{2}$	(b) $\sqrt{2} : 1$	(c) $1:\sqrt{3}$	(<i>d</i>) $\sqrt{3}$: 1		
55.	The ratio of latera diameter 1.6 m an		total surface area o	of a cylinder with base		
	(a) 1:7	ia neight 20 cm is	(b) 1:5			
	(c) 7:1		(d) 5:1	1.10		
56.			0	and 10 cm melted and		
		gle cube, then the d	_			
	(a) $4\sqrt{3}$ cm	(b) $15\sqrt{3}$ cm	(c) $12\sqrt{3}$ cm	(d) $11\sqrt{3}$ cm		
57.		1		e with both their radii		
	equal to 2 cm. If to of the solid is	he height of the coi	ne is equal to its ra	dius, then the volume		
		(h) 10 cm3	(a) 16- am3	(d) 12- m3		
	(a) 8π cm ³	(b) 10 cm^3		(d) 12π cm ³		
58.	The diameter of a 2 mm. The length	-	melted and drawn	into a wire of diameter		
	(a) 36 m	(b) 32 m	(c) 38 m	(b) 34 m		
59.	A solid consists of	a circular cylinder	surmounted by a r	ight circular cone. The		
		•	•	3 times the volume of		
	0	height of the circul				
	(a) 2h	(b) $\frac{3}{2}h$	(c) $\frac{h}{2}$	(d) $\frac{2h}{3}$		
60.	A solid is hemispl	nerical at the bottom	and conical above	. If the surface areas of		
	•			he height of its conical		
	part is	1				
	(a) $1:\sqrt{2}$	(b) $\sqrt{2}:1$	(c) $1:\sqrt{3}$	(d) $\sqrt{3}:1$		

Chapter 16: Statistics

MULTIPLE-CHOICE QUESTIONS —

For Basic and Standard Levels

Choose the correct answer	from the given f	four options in the	e following questions:
	\sim		0 1

OI	Dasic and Stand	alu Leveis		
Cho	ose the correct ans	swer from the give	en four options in th	ne following questions:
1.	Which of the follo	owing is not a mea	sure of central tend	lency?
	(a) Mean	(b) Median	(c) Mode	(d) Standard deviation
2.	The arithmetic me	ean of x , $x + 3$, $x + 3$	6, x + 9 and x + 12	is
	(a) $x + 6$	(b) $x + 5$	(c) $x + 7$	(d) x + 8
3.	If the arithmetic m 104, 106, 108, 103		and 7 is 5, then the	arithmetic mean of 102,
	(a) 104	(b) 102	(c) 105	(d) 103
4.	The arithmetic me	ean of 1, 2, 3, 4,	, <i>n</i> is	
	(a) $\frac{n}{2}$	$(b) \frac{n+1}{2}$	(c) $\frac{n-1}{2}$	$(d) \ \frac{n}{2} + 1$
5.	The class marks o	of classes 10 – 25 ar	nd 35 – 55 respectiv	ely are [CBSE 2008]
	(a) 16, 45.5	(b) 16.5, 44.5	(c) 17.5, 45	(d) 17, 44
6.	While computing are	the mean of grou	ıp data, it is assum	ed that the frequencies
	(a) centred at the	lower limits of the	e classes	
	(b) centred at the	upper limits of th	e classes	
	(c) evenly distribu	uted over all the c	lasses	
	(d) centred at the	class marks of the	classes	
7.	In the formula \bar{x}	$= a + \frac{\sum f_i d_i}{\sum f_i}, \text{ for fin}$	nding the mean of tl	he grouped data, $d_i s$ are
	the deviation fron	n a of		
	(a) mid-points of	the classes	(b) lower limits o	of the classes
	(c) upper limits o	of the classes	(d) frequencies of	f the class marks
8.	In the formula \bar{x}	$= a + h \frac{\sum f_i u_i}{\sum f_i}, \text{ for}$	or finding the mean	of grouped frequency
	distribution u_i is e	equal to		

9. Mode is the value of the variable which has

(a) minimum frequency

(a) $\frac{x_i + a}{h}$ (b) $\frac{x_i - a}{h}$

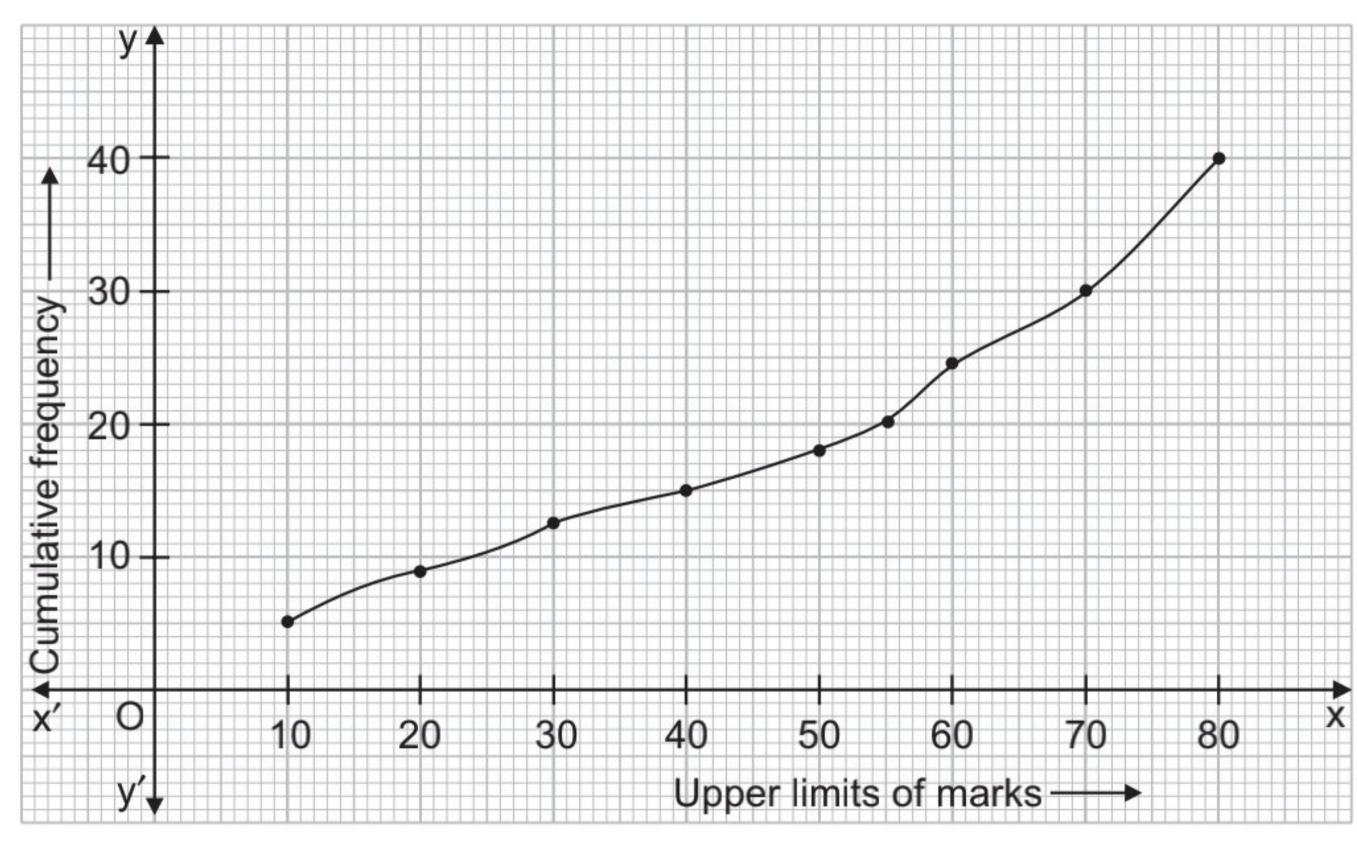
(b) mean frequency

(c) maximum frequency

(d) middle most frequency

(c) $h(x_i - a)$ (d) $h(x_i + a)$

10.	If the mode	of the data	a: 64, 60,	48, :	x, 43, 4	48, 4 3	3, 34	is 43, t	her	1x + 2 is	equal to
	(a) 43	(b)	45		(c)	48			(d)	60	
11.	The measure	e(s) of cent	tral tende	ncy	that y	woul	d be	best su	iite	ed to dete	ermine the
	consumer ite	em in dem	and is								
	(a) mean				` '	med					
	(c) mode				(<i>d</i>)	mea	n an	d medi	ian		
12.	The wickets	taken by a	a bowler	in 1	5 cric	ket m	atch	es are	as	follows:	
	1, 3, 2, 0, 3, 4	, 3, 2, 5, 1,	2, 2, 1, 0	, 2.	Then	the n	node	of the	da	ta is	
	(a) 2	(b) 3	3		(c)	3			(<i>d</i>)	1	
13.	If the median	n of the da	ata: 6, 7, 2	c — 2	2, x, 17	and	20 v	vritten	in	increasir	ng order is
	16, then the	value of x	is								
	(a) 18	(b)	15		(c)	16			(<i>d</i>)	17	
14.	For the follow	wing data	:								
	Marks: 0, 0,	0, 1, 2, 2,	3, 3, 3, 4	, 5,	5, 5, 5	6, 6, 6	5, 7,	8 the n	nec	lian and	mode are
	respectively										
	(a) 4, 3	(b) :	3.5, 5		(c)	4.5,	4		(<i>d</i>)	5, 6	
15.	Out of twent			-			_				
	and eight sec									-	U
	four student	s are 39, 5	o1, 69 and	1 43	, then	the 1	medi	ian ma	rks	of the w	vhole data
	are (a) 49	(b)	47		(c)	51			<i>(d)</i>	48	
	3 /	` '			()				100		1
16.	If a variable	takes dis	crete val	ues	, x + 4	1, x –	$\frac{7}{2}$	$x-\frac{3}{2}$, x	-3, x-	$2, x + \frac{1}{2},$
	$x-\frac{1}{2}, x+5;$	x > 0, the	n the me	diar	n of th	e dat	a is				
			_				_			5	
	(a) $x - \frac{5}{2}$	(b) :	$x-\frac{3}{3}$		(c)	$x - \frac{1}{2}$	$\frac{3}{4}$		<i>(d)</i>	$x-\frac{3}{6}$	
17.	If the mediar	n of the giv	ven data:	24.	25, 26	x + 2	2.x +	- 3, 30,	31,	34 is 27.	5, then the
	value of x is	O		,	,			, ,	,		
	(a) 27	(b)	28		(c)	25			(d)	30	
18.	For the frequ	ency dist	ribution t	abl	e give	n bel	ow,	write t	he	median (class.
	Class interva	l	0 - 10)	10 -	20	20	- 30	3	30 – 40	40 - 50
	Frequency		6		8			7		9	14
	Cumulative f	reauencu	6		14	1		21		30	44
			20 40			27.2	- 0		(1)		
	(a) $20 - 30$	` /	30 – 40	1	` '	40 –	50		(<i>a</i>)	0 – 10	
19.	For the follo	wing frequ	uency dis	strib	ution						
	Class	30 – 35	35 – 40	40	- 45	45 -	- 50	50 – 5	5	55 – 60	60 – 65
	Frequency	14	16		18	23	3	18		8	3


the difference of the upper limit of the median class and the lower limit of the modal class is

- (a) 20
- (b) 15
- (c) 5
- (d) 10
- 20. The median of a given frequency distribution is found graphically with the help of
 - (a) frequency curve

(b) frequency polygon

(c) histogram

- (d) an ogive
- 21. A student draws a cumulative frequency curve for the marks obtained by 40 students of a class as shown. The median marks obtained by the students of the class are

- (a) 55
- (b) 45
- (c) 50
- (d) 60
- 22. If the mode of some data is 7 and their mean is also 7, then their median is
 - (a) 10
- (b) 9
- (c) 8
- (d) 7
- 23. If the median and mode of a data are 52 and 52.4 respectively, then its mean is
 - (a) 51.6
- (b) 52.2
- (c) 52
- (d) 51.8
- **24.** If $\sum f_i x_i = 132 + 5p$, $\sum f_i = 20$ and the mean of the distribution is 8.1, then the value of *p* is

- 25. The median of first 10 prime numbers is
 - (a) 13 (b) 14
- (c) 12
- (d) 11

For Standard Level

- **26.** The mean of *n* observations is \bar{x} . If the first observation is increased by 1, the second by 2, the third by 3, and so on, then the new mean is
 - (a) $\overline{x} + 2(n+1)$ (b) $\overline{x} + \frac{n+1}{2}$ (c) $\overline{x} + (n+1)$ (d) $\overline{x} \frac{(n+1)}{2}$

27.	The mean monthly salary of 10 members of a group is ₹ 1445. If one more
	member whose monthly salary is ₹ 1500 joins the group, then the mean monthly
	salary (in ₹) of 11 members of the group is

/ \	~	4 4 - 0
(a)	₹	1450
(u)	1	TIJU

28. The mean of 6 numbers is 16. With the removal of a number the mean of remaining numbers is 17. The number removed is

(c)
$$11$$
 (d) 6 [CBSE SP 2011]

29. If 89 is added to the given data: 45, 49, 52, 53, 67, 77, 81, 99, then the median increases by

$$(c)$$
 6

$$(d)$$
 5

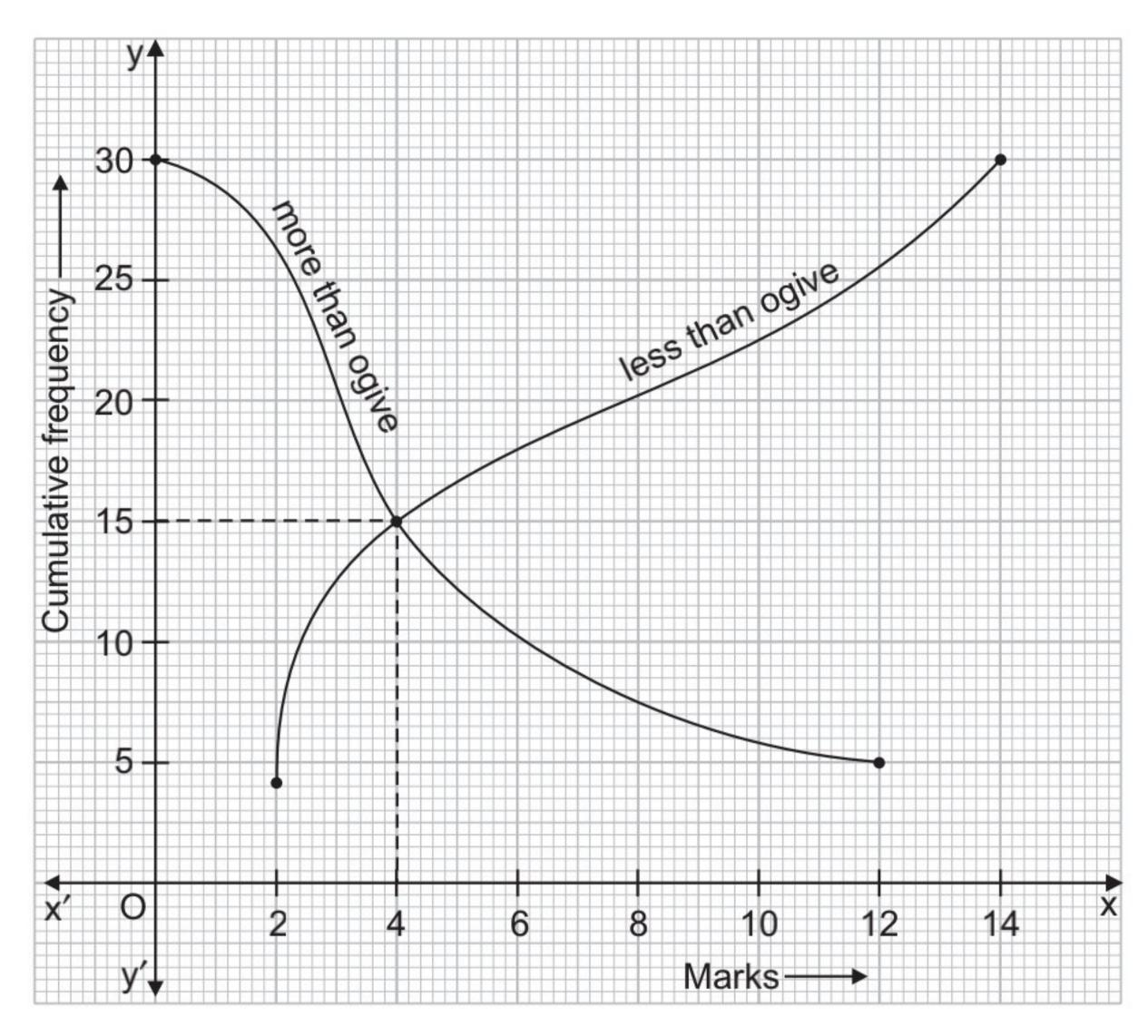
30. The marks obtained by 60 students are tabulated below.

Marks	0 – 10	10 – 20	20 – 30	30 – 40	40 – 50	Total
Number of students	2	10	25	20	3	60

The number of students who got less than 30 marks is equal to

31. Consider the following frequency distribution:

Height (in cm)	Less than 140	Less than 145	Less than 150	Less than 155	Less than 160	Less than 165
Number of girls	4	11	29	40	46	51


The lower limit of the modal class is

32. Which measure of central tendency is given by the x-coordinate of the point of intersection of 'more than ogive' and 'less than ogive'? [CBSE 2008]

11	3.6
(a)	Mean
(n)	IVICALI

(d) Mean and Mode

- 33. Using the graph in the figure of 'less than ogive' and 'more than ogive', the median of the data is
 - (a) 12
- (b) 30
- (c) 4
- (d) 15

- **34.** In a graphical representation if p times the distance between the median and mean is twice the distance between mode and mean, then the value of p is
 - (a) 5
- (b) 2
- (c) 6
- (d) 3
- **35.** The mean of 11 observations is 30. If the mean of the first 6 observations is 28 and that of the last 6 observations is 32, then the 6th number is equal to
 - (a) 32

(b) 29

(c) 30

- (d) 31
- 36. The mode of the distribution

Class interval	0 – 20	20 – 40	40 – 60	60 - 80
Frequency	15	6	18	10

is

- (a) 54
- (*b*) 52
- (c) 50
- (*d*) 53
- 37. Find the median of the following distribution.

Class interval	0 – 8	8 – 16	16 – 24	24 – 32	32 – 40	40 – 48
Frequency	8	10	16	24	15	7

- (a) 29
- (b) 30
- (c) 26
- (d) 28

- **38.** The mean of 1, 3, 4, 5, 7 and 4 is m. The numbers 3, 2, 2, 4, 3, 3 and p have mean m-1 and median q. Then p+q is
 - (a) 4
- (*b*) 5
- (c) 6
- (d) 7
- **39.** The sum of deviations of a set of values $x_1, x_2, x_3, ..., x_n$ measured from 50 is -10 and the sum of deviations of the values from 46 is 70. Then, the value of n is equal to
 - (a) 25
- (b) 20
- (c) 22
- (d) 18

40.	Class interval	0 – 10	10 – 30	30 – 60	60 - 80	80 – 90
	Frequency	5	15	30	y	2
	Cumulative frequency	x	20	50	58	z

The unknown entries x, y and z in the distribution given above are

- (a) x = 15, y = 20, z = 56.
- (b) x = 5, y = 8, z = 60.
- (c) x = 10, y = 28, z = 20.
- (*d*) x = 20, y = 10, z = 50.

Chapter 17: Probability

MULTIPLE-CHOICE QUESTIONS —

For Basic and Standard Levels

Choose the correct answer from the given fou	r options in the following questions:
--	---------------------------------------

Cnc	ose the correc	et answer from the	given four options	in the following	g questions:
1.	Which of the	following cannot b	e the probability of	f an event?	
	(a) 1.5	(b) $\frac{3}{5}$	(c) 25%	(d) 0.3	
2.	If an event is	very unlikely to ha	ppen, then its prob	pability is closes	st to
	(a) 0.1	(b) 0.0001	(c) 0.1	(d) 0.001	
3.	In a family of	f 3 children, the pro	bability of having	at least one boy	is is
	(a) $\frac{7}{8}$	(b) $\frac{1}{8}$	(c) $\frac{5}{8}$	$(d) \frac{3}{4}$	[CBSE 2014]
4.	If a die is thre	own once, the prob	ability of getting a	perfect square	is
	(a) $\frac{1}{3}$	$(b) \frac{1}{4}$	(c) $\frac{2}{3}$	$(d) \frac{3}{4}$	
5.		-shuffled pack of of getting a black qu		rawn at rando	m. Find the
	(a) $\frac{3}{26}$	(b) $\frac{2}{13}$	$(c) \frac{1}{13}$	(d) $\frac{1}{26}$	[CBSE 2008]
6.		wn from a deck of some number of outcor			is not a king
	(a) 26	(b) 51	(c) 41	(d) 13	
7.	A card is draw	wn from a well-shu be an ace is	ffled deck of 52 car	ds. The probab	ility that the
	(a) $\frac{1}{13}$		(c) $\frac{12}{13}$	$(d) \frac{3}{4}$	[CBSE 2011]
8.	The probability	ity that a number se ble of 4 is	elected at random f	rom the numbe	ers 1, 2, 3,,
	(a) $\frac{4}{15}$		(b) $\frac{2}{15}$		
	(c) $\frac{1}{5}$		$(d) \frac{1}{3}$		[CBSE 2014]

9. The probability of drawing a red card or a king from a standard deck of wellshuffled 52 cards is

(a) 5	(h) 7	(a) 11	(d) 9
(a) $\frac{5}{13}$	(b) $\frac{7}{13}$	(c) $\frac{11}{13}$	(d) $\frac{9}{13}$

(a) E and C	(b) R and E	(c) O and R	(<i>d</i>) E, R and O	
11. From the data (1, 4, 9, 16, 25, 29) if 29 is removed, then the probability of getting a number which is neither a prime nor a composite is				
a number w	vnich is neither a prin	ne nor a composite	18	
(a) $\frac{2}{5}$	$(b) \frac{1}{5}$	(c) $\frac{3}{5}$	$(d) \frac{4}{5}$	
12. A game of	chance consists of spi	nning an arrow wh	nich comes to rest pointing	
0	_	0	re equally likely outcomes.	
	robability that it will			
1	5	3	1	
(a) $\frac{1}{8}$	(b) $\frac{3}{8}$	(c) $\frac{3}{8}$	$(d) \frac{1}{2}$	
10 It is sirven th	batin a amoun of thus	a aku damba tha muah	ability of type of dead and and	
	0 1	-	pability of two students not	
	*	91. Then, the proba	ability of the two students	
having the	same birthday is			
(a) 0.009	(b) 0.001	(c) 0.990	(d) 0.007	
14. If the proba	ability of success is 38	%, then the probab	ility of failure is	
(a) 38%	(b) 62%	(c) 52%	(d) 68%	
	, ,		a child picks a flower, then	
the probabi	lity of the flower beir	ng other than rose i	S	
$(a) \frac{1}{}$	(b) $\frac{1}{3}$	(c) $\frac{2}{3}$	$(d) \frac{2}{5}$	
5	3	3	5	
16. The probability of getting an even number, when a die is thrown once, is				
16. The probab	mity of getting an eve	en number, when a	are is thrown office, is	
<u> </u>		4	_	
<u> </u>		4	(d) $\frac{5}{6}$ [CBSE 2013]	
$(a) \frac{1}{2}$	$(b) \ \frac{1}{3}$	(c) $\frac{1}{6}$	(d) $\frac{5}{6}$ [CBSE 2013]	
(a) $\frac{1}{2}$ 17. Many birds	$\begin{array}{c} (b) \ \frac{1}{3} \\ \text{s were sitting on a tree} \end{array}$	(c) $\frac{1}{6}$ ee. Every seventh b	(d) $\frac{5}{6}$ [CBSE 2013] ird was a sparrow. A bird	
(a) $\frac{1}{2}$ 17. Many birds flew away.	(b) $\frac{1}{3}$ were sitting on a tree. What is the probability	(c) $\frac{1}{6}$ e. Every seventh be ty that the bird was	(d) $\frac{5}{6}$ [CBSE 2013] ird was a sparrow. A bird s not a sparrow?	
(a) $\frac{1}{2}$ 17. Many birds flew away.	(b) $\frac{1}{3}$ were sitting on a tree. What is the probability	(c) $\frac{1}{6}$ e. Every seventh be ty that the bird was	(d) $\frac{5}{6}$ [CBSE 2013] ird was a sparrow. A bird s not a sparrow?	
(a) $\frac{1}{2}$ 17. Many birds flew away. (a) $\frac{5}{7}$	(b) $\frac{1}{3}$ s were sitting on a tree. What is the probability (b) $\frac{3}{7}$	(c) $\frac{1}{6}$ e. Every seventh be ty that the bird was $\binom{c}{7}$	(d) $\frac{5}{6}$ [CBSE 2013] ird was a sparrow. A bird s not a sparrow? $(d) \frac{1}{7}$	
 (a) 1/2 17. Many birds flew away. (a) 5/7 18. A box contains 	(b) $\frac{1}{3}$ s were sitting on a tree. What is the probability $(b) \frac{3}{7}$ ains cards numbered	(c) $\frac{1}{6}$ e. Every seventh be ty that the bird was $\binom{c}{7}$ 6 to 50. A card is constant to the constant	(d) $\frac{5}{6}$ [CBSE 2013] ird was a sparrow. A bird s not a sparrow? (d) $\frac{1}{7}$ drawn at random from the	
 (a) 1/2 17. Many birds flew away. (a) 5/7 18. A box contabox. The presentation of the presentation of the presentation. 	(b) $\frac{1}{3}$ s were sitting on a tree. What is the probability $(b) \frac{3}{7}$ ains cards numbered	(c) $\frac{1}{6}$ e. Every seventh be ty that the bird was $\binom{c}{7}$ 6 to 50. A card is constant to the constant	(d) $\frac{5}{6}$ [CBSE 2013] ird was a sparrow. A bird s not a sparrow? $(d) \frac{1}{7}$	
 (a) 1/2 17. Many birds flew away. (a) 5/7 18. A box contains box. The profise 	(b) $\frac{1}{3}$ s were sitting on a tree. What is the probability $\frac{3}{7}$ ains cards numbered obability that the draw	(c) $\frac{1}{6}$ The entire is exert the second was $\frac{c}{7}$. A card is converged and the second with the second second card has a number $\frac{1}{6}$.	(d) $\frac{5}{6}$ [CBSE 2013] ird was a sparrow. A bird s not a sparrow? (d) $\frac{1}{7}$ drawn at random from the er which is a perfect square	
 (a) 1/2 17. Many birds flew away. (a) 5/7 18. A box contains box. The profise 	(b) $\frac{1}{3}$ s were sitting on a tree. What is the probability $\frac{3}{7}$ ains cards numbered obability that the draw	(c) $\frac{1}{6}$ The entire is exert the second was $\frac{c}{7}$. A card is converged and the second with the second second card has a number $\frac{1}{6}$.	(d) $\frac{5}{6}$ [CBSE 2013] ird was a sparrow. A bird s not a sparrow? (d) $\frac{1}{7}$ drawn at random from the er which is a perfect square	
 (a) 1/2 17. Many birds flew away. (a) 5/7 18. A box contains box. The profise 	(b) $\frac{1}{3}$ s were sitting on a tree. What is the probability $\frac{3}{7}$ ains cards numbered obability that the draw	(c) $\frac{1}{6}$ The entire is exert the second was $\frac{c}{7}$. A card is converged and the second with the second second card has a number $\frac{1}{6}$.	(d) $\frac{5}{6}$ [CBSE 2013] ird was a sparrow. A bird s not a sparrow? (d) $\frac{1}{7}$ drawn at random from the	
 (a) 1/2 17. Many birds flew away. (a) 5/7 18. A box contains box. The profis (a) 1/45 	(b) $\frac{1}{3}$ s were sitting on a tree. What is the probability $(b) \frac{3}{7}$ ains cards numbered obability that the draw $(b) \frac{2}{15}$	(c) $\frac{1}{6}$ The end of the en	(d) $\frac{5}{6}$ [CBSE 2013] ird was a sparrow. A bird s not a sparrow? (d) $\frac{1}{7}$ drawn at random from the er which is a perfect square	
 (a) 1/2 17. Many birds flew away. (a) 5/7 18. A box contabox. The profis (a) 1/45 19. A box contabox contabox. 	(b) $\frac{1}{3}$ s were sitting on a tree. What is the probability $(b) \frac{3}{7}$ ains cards numbered obability that the draw $(b) \frac{2}{15}$ ains 90 discs, numbered	(c) $\frac{1}{6}$ The entire is the entire in	ird was a sparrow. A bird s not a sparrow? (d) $\frac{1}{7}$ drawn at random from the er which is a perfect square (d) $\frac{4}{45}$ [CBSE 2013]	
 (a) 1/2 17. Many birds flew away. (a) 5/7 18. A box contains (box. The pressure is (a) 1/45 19. A box contains 19. A box contains 	(b) $\frac{1}{3}$ s were sitting on a tree. What is the probability $(b) \frac{3}{7}$ ains cards numbered obability that the draw $(b) \frac{2}{15}$ ains 90 discs, numbered ox, the probability that	(c) $\frac{1}{6}$ The entire Every seventh be the ty that the bird was $\binom{c}{7} = \frac{6}{7}$ The following the following the following that the bird was a number of the following that the following the following that the following the following that the following that the following the following that the following the following that the following the following the following the following the f	ird was a sparrow. A bird s not a sparrow? (d) $\frac{1}{7}$ drawn at random from the er which is a perfect square (d) $\frac{4}{45}$ [CBSE 2013] The disc is drawn at random number less than 23 is	
 (a) 1/2 17. Many birds flew away. (a) 5/7 18. A box contains (box. The pressure is (a) 1/45 19. A box contains 19. A box contains 	(b) $\frac{1}{3}$ s were sitting on a tree. What is the probability $(b) \frac{3}{7}$ ains cards numbered obability that the draw $(b) \frac{2}{15}$ ains 90 discs, numbered ox, the probability that	(c) $\frac{1}{6}$ The entire Every seventh be the ty that the bird was $\binom{c}{7} = \frac{6}{7}$ The following the following the following that the bird was a number of the following that the following the following that the following the following that the following that the following the following that the following the following that the following the following the following the following the f	ird was a sparrow. A bird s not a sparrow? (d) $\frac{1}{7}$ drawn at random from the er which is a perfect square (d) $\frac{4}{45}$ [CBSE 2013] The disc is drawn at random	
 (a) 1/2 17. Many birds flew away. (a) 5/7 18. A box contains (box. The profits (a) 1/45 19. A box contains (a) 7/90 	(b) $\frac{1}{3}$ s were sitting on a tree. What is the probability $(b) \frac{3}{7}$ ains cards numbered obability that the draw $(b) \frac{2}{15}$ ains 90 discs, numbered ox, the probability that $(b) \frac{10}{90}$	(c) $\frac{1}{6}$ The entire is the entire in the entire is the entire in the entire in the entire in the entire is the entire in	ird was a sparrow. A bird s not a sparrow? (d) $\frac{1}{7}$ drawn at random from the er which is a perfect square (d) $\frac{4}{45}$ [CBSE 2013] The disc is drawn at random number less than 23 is	
 (a) 1/2 17. Many birds flew away. (a) 5/7 18. A box contains (box. The profits (a) 1/45 19. A box contains (a) 7/90 	(b) $\frac{1}{3}$ s were sitting on a tree. What is the probability $(b) \frac{3}{7}$ ains cards numbered obability that the draw $(b) \frac{2}{15}$ ains 90 discs, numbered ox, the probability that $(b) \frac{10}{90}$ becaused coins are tosses.	(c) $\frac{1}{6}$ The entire is the entire in the entire is the entire in the entire in the entire in the entire is the entire in	ird was a sparrow. A bird s not a sparrow? (d) $\frac{1}{7}$ drawn at random from the er which is a perfect square (d) $\frac{4}{45}$ [CBSE 2013] The disc is drawn at random number less than 23 is (d) $\frac{9}{89}$ [CBSE 2013]	
 (a) 1/2 17. Many birds flew away. (a) 5/7 18. A box contains (a) 1/45 19. A box contains (a) 1/45 19. A box contains (a) 7/90 20. If three unkneeds or the eads or t	(b) $\frac{1}{3}$ s were sitting on a tree. What is the probability $(b) \frac{3}{7}$ ains cards numbered obability that the draw $(b) \frac{2}{15}$ ains 90 discs, numbered ox, the probability that $(b) \frac{10}{90}$ because d coins are tossed ree tails is	(c) $\frac{1}{6}$ The enterpolar seventh be the enterpolar seventh be the enterpolar seventh be the enterpolar seventh be the enterpolar seventh	ird was a sparrow. A bird s not a sparrow? (d) $\frac{1}{7}$ drawn at random from the er which is a perfect square (d) $\frac{4}{45}$ [CBSE 2013] The disc is drawn at random number less than 23 is (d) $\frac{9}{89}$ [CBSE 2013] The disc is drawn at random number less than 23 is	
 (a) 1/2 17. Many birds flew away. (a) 5/7 18. A box contains (box. The profits (a) 1/45 19. A box contains (a) 1/90 20. If three units 	(b) $\frac{1}{3}$ s were sitting on a tree. What is the probability $(b) \frac{3}{7}$ ains cards numbered obability that the draw $(b) \frac{2}{15}$ ains 90 discs, numbered ox, the probability that $(b) \frac{10}{90}$ becaused coins are tosses.	(c) $\frac{1}{6}$ The entire is the entire in the entire is the entire in the entire in the entire in the entire is the entire in	ird was a sparrow. A bird s not a sparrow? (d) $\frac{1}{7}$ drawn at random from the er which is a perfect square (d) $\frac{4}{45}$ [CBSE 2013] The disc is drawn at random number less than 23 is (d) $\frac{9}{89}$ [CBSE 2013]	
 (a) 1/2 17. Many birds flew away. (a) 5/7 18. A box contains (a) 1/45 19. A box contains (a) 1/45 19. A box contains (a) 7/90 20. If three unkneeds or the eads or t	(b) $\frac{1}{3}$ s were sitting on a tree. What is the probability $(b) \frac{3}{7}$ ains cards numbered obability that the draw $(b) \frac{2}{15}$ ains 90 discs, numbered ox, the probability that $(b) \frac{10}{90}$ because d coins are tossed ree tails is	(c) $\frac{1}{6}$ The enterpolar seventh be the enterpolar seventh be the enterpolar seventh be the enterpolar seventh be the enterpolar seventh	ird was a sparrow. A bird s not a sparrow? (d) $\frac{1}{7}$ drawn at random from the er which is a perfect square (d) $\frac{4}{45}$ [CBSE 2013] The disc is drawn at random number less than 23 is (d) $\frac{9}{89}$ [CBSE 2013] The disc is drawn at random number less than 23 is	

10. If a letter is drawn at random from the letters in word 'ERROR', then the letters

which have equal probability of being drawn are

the same birthday?

Scanned with CamScanner

	random from the	box, what is the pro	bability that it will	not be a white marble?
	(a) $\frac{1}{3}$	(b) $\frac{4}{9}$	(c) $\frac{7}{9}$	(d) $\frac{2}{9}$ [CBSE 2009 C]
23.	•	red balls and 6 bla ity of getting a black		s taken out at random,
	(a) $\frac{3}{5}$	$(b) \frac{1}{5}$	(c) $\frac{2}{5}$	(d) $\frac{4}{5}$ [CBSE 2008]
24.	The probability of of good eggs in the		in a lot of 500 is 0.	.028. Then, the number
	(a) 480	(b) 486	(c) 591	(d) 490
25.	0	1		e first prize in a lottery kets bought by her is (d) 25
		(0) 00	(0) 120	(11) 20
For	Standard Level			
	Then, the probab	is shuffled well aft ility of drawing a n		1
	(a) $\frac{1}{13}$	(b) $\frac{1}{20}$	(c) $\frac{1}{36}$	$(d) \frac{2}{13}$
27.	Two dice are through both the dice is	own together. The p	probability of gettin	ng the same number on
	(a) $\frac{1}{2}$	$(b) \frac{1}{3}$	$(c) \frac{1}{6}$	(d) $\frac{1}{12}$ [CBSE 2012]
28.	In a single throw	of two dice, the pro	obability of getting	6 as a product is
	(a) $\frac{4}{9}$	(b) $\frac{2}{9}$	(c) $\frac{1}{9}$	$(d) \frac{5}{9}$
29.		1070		ain question is $\frac{x}{y}$. If the
	probability of not	t guessing the corre	ect answer to this qu	uestions is $\frac{2}{3}$, then
	(a) $y = 4x$		(b) y = 3x	3
	(c) $y = 2x$		(d) y = x	
30.		red balls and <i>n</i> greet times that of a red	•	obability of drawing a see of n is
	(a) 18	(b) 15	(c) 10	(d) 20

21. Two friends were born in the year 2000. What is the probability that they have

22. A box contains 3 blue, 2 white and 4 red marbles. If a marble is drawn at

(a) $\frac{1}{365}$ (b) $\frac{1}{366}$ (c) $\frac{2}{365}$ (d) $\frac{1}{183}$ [CBSE 2008 C]

31.	A school has five houses A, B, C, D and E. A class has 48 students, 9 from house
	A, 13 from house B, 10 from house C, 7 from house D and the rest are from
	house E. A single student is selected at random to be the class monitor. The
	probability that the selected student is not from D and E is

	1
<i>(a)</i>	$\frac{1}{4}$

(b)
$$\frac{1}{3}$$

(c)
$$\frac{2}{3}$$

(d)
$$\frac{2}{5}$$

32. Two dice are thrown at the same time. The probability of getting the difference of the numbers on the two dice equal to 2 is

(a)
$$\frac{2}{9}$$

(a)
$$\frac{2}{9}$$
 (b) $\frac{1}{3}$ (c) $\frac{4}{9}$ (d) $\frac{5}{9}$

(c)
$$\frac{4}{9}$$

(d)
$$\frac{5}{9}$$

33. If a coin is tossed two times, then the probability of getting at most one head is

(a)
$$\frac{3}{4}$$

(a)
$$\frac{3}{4}$$
 (b) $\frac{1}{4}$ (c) $\frac{1}{2}$

(c)
$$\frac{1}{2}$$

(d)
$$\frac{3}{8}$$

34. If a coin is tossed three times, then the probability of getting at most 2 heads is

(a)
$$\frac{5}{8}$$

(b)
$$\frac{3}{8}$$

(c)
$$\frac{7}{8}$$

$$(d) \ \frac{3}{4}$$

35. Two customers visit a particular shop in the same week (Tuesday to Saturday). Each is equally likely to visit the shop on any one day as on another. The probability that both will visit the shop on two consecutive days is

(a)
$$\frac{11}{25}$$

(b)
$$\frac{8}{25}$$
 (c) $\frac{7}{25}$

(c)
$$\frac{7}{25}$$

(d)
$$\frac{9}{25}$$

[Hint: Favourable cases are T W, W T, W Th, Th W, Th F, F Th, F S, S F]