Chapter 1: Number System

MULTIPLE-CHOICE QUESTIONS -Choose the correct answer from the given four options in the following questions: 1. Every rational number is (a) a natural number (b) an integer (c) a real number (d) a whole number [CBSE SP 2011] 2. Decimal representation of a rational number cannot be (a) terminating (b) non-terminating (c) non-terminating repeating (d) non-terminating non-repeating [CBSE SP 2010] 3. π is an irrational number because its decimal expansion is (a) terminating (b) non-terminating (c) non-terminating repeating (d) non-terminating non-repeating 4. Every point on a number line represents (a) a unique real number (b) a natural number (c) a rational number (d) an irrational number **5.** Which of the following is a rational number? (d) $\frac{\sqrt{2}}{3}$ [CBSE SP 2011] (a) $\frac{-2}{3}$ (b) $\frac{-1}{\sqrt{5}}$ (c) $\frac{13}{\sqrt{5}}$ **6.** Which of the following is irrational? (a) 0.15 (b) $0.15\overline{16}$ (c) $0.\overline{1516}$ (d) 0.5015001500015... 7. A rational number equivalent to $\frac{3}{17}$ is (a) $\frac{6}{17}$ (b) $\frac{6}{34}$ (c) $\frac{17}{3}$ (d) $\frac{3}{34}$ 8. A rational number between 2 and 3 is (a) 2.010010001... (d) $4 - \sqrt{2}$ [CBSE SP 2013] 9. Four rational numbers between 3 and 4 are (b) $\frac{3}{5}$, $\frac{4}{5}$, 1, $\frac{6}{5}$ (a) 3.1, 3.2, 3.8, 3.9 (d) $\frac{13}{5}$, $\frac{14}{5}$, $\frac{16}{5}$, $\frac{17}{5}$ (c) 3.1, 3.2, 4.1, 4.2

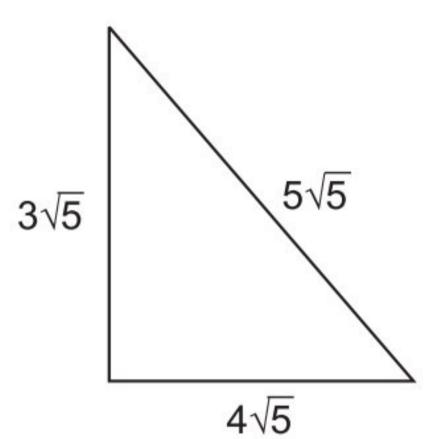
10. The smallest irrational number to be added to $3 + \sqrt{2}$ to get a rational number

(b) $3 - \sqrt{2}$ (c) $\sqrt{2} - 3$ (d) $\sqrt{3} + 2$

is

(a) $-\sqrt{2}$

- **11.** The value of $0.\overline{3}$ in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$ is


- (a) $\frac{33}{100}$ (b) $\frac{3}{10}$ (c) $\frac{1}{3}$ (d) $\frac{3}{100}$ [CBSESP 2011]
- 12. $0.3\overline{2}$ expressed in the form $\frac{p}{a}$, where p and q are integers and $q \neq 0$, is

- (a) $\frac{8}{25}$ (b) $\frac{29}{90}$ (c) $\frac{32}{99}$ (d) $\frac{32}{199}$
- 13. $0.\overline{437}$ expressed in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$, is
 - (a) $\frac{437}{9999}$ (b) $\frac{394}{999}$ (c) $\frac{434}{99}$ (d) $\frac{437}{999}$

- **14.** Simplest rationalisation factor of $\sqrt[3]{40}$ is
 - (a) $\sqrt[3]{25}$
 - (b) $\sqrt[3]{5}$
- (c) $\sqrt{40}$
- (d) $\sqrt{5}$

- 15. $2\sqrt{5} + \sqrt{5}$ is equal to
 - (a) $2\sqrt{10}$
- (b) 10
- (c) $3\sqrt{5}$
- (d) $3\sqrt{10}$

- 16. The perimeter of the given figure is
 - (a) $60\sqrt{5}$
 - (b) $12\sqrt{5}$
 - (c) $27\sqrt{5}$
 - (*d*) $32\sqrt{5}$

- 17. On simplification of $\left(\frac{2}{3}\sqrt{5} \frac{1}{2}\sqrt{2} + 6\sqrt{11}\right) + \left(\frac{1}{3}\sqrt{5} + \frac{3}{2}\sqrt{2} \sqrt{11}\right)$, we get
 - (a) $\sqrt{5} + \sqrt{2} + 5\sqrt{11}$

(b) $\frac{\sqrt{5}}{2} + 2\sqrt{2} + \sqrt{11}$

(c) $\sqrt{5} + \sqrt{2} + 6\sqrt{11}$

- (d) $\sqrt{5} + 2\sqrt{2} + 5\sqrt{11}$
- **18.** The product of $\sqrt[3]{7}$ and $\sqrt{5}$ is
- (a) $\sqrt[3]{35}$ (b) $\sqrt[6]{35}$ (c) $\sqrt[6]{6125}$
- (*d*) ∜1225

- 19. The product of $\frac{1}{6}\sqrt{18}$ and $\frac{1}{3}\sqrt{18}$ is

 - (a) 1 (b) $\frac{1}{12}$ (c) $\frac{1}{3}$
- (d) $\sqrt{2}$
- 20. $\sqrt{5} \times \sqrt{7} \times \sqrt{15} \times \sqrt{21}$ in simplified form is
 - (a) $\sqrt{105}$ (b) $\sqrt{210}$ (c) 105
- (d) 210
- 21. $(3+\sqrt{3})(3-\sqrt{3})$ on simplification becomes equal to

- (a) 18 (b) $2\sqrt{3}$ (c) 6
- (d) 9

- 22. The value of $(3 + \sqrt{5})^2 (3 \sqrt{5})^2$ is

 - (a) 15 (b) 16
- (c) 4
- (d) 14
- 23. $\sqrt[3]{250} \div \sqrt[3]{10}$ in simplified form is equal to
 - (a) $\sqrt[3]{25}$ (b) 5
- (c) $\sqrt{5}$
- ₹2500

- 24. $\frac{30}{\sqrt{20} + \sqrt{5}}$ is equal to
 - (a) $\frac{10}{3\sqrt{5}}$ (b) $\frac{30}{\sqrt{5}}$
- (c) $\frac{10}{\sqrt{5}}$
- (*d*) $12\sqrt{5}$

[CBSE SP 2011]

- 25. $\frac{6}{\sqrt{12}-\sqrt{3}}$ is equal to
 - (a) $\frac{1}{\sqrt{3}}$ (b) $\frac{2}{\sqrt{3}}$
- (c) $2\sqrt{3}$
- (*d*) $6\sqrt{3}$

[CBSE SP 2011]

- **26.** The value of $\frac{2^0 + 7^0}{5^0}$ is
 - (a) 2
- (b) 0
- (c) $\frac{9}{5}$
- $(d) \frac{1}{5}$

- 27. On simplifying $\frac{2^{30} + 2^{29}}{2^{31} 2^{30}}$, we get
 - (a) 1
- (*b*) 2
- (c) $\frac{2}{3}$
- (d) $\frac{3}{2}$

- 28. The value of $\sqrt{(3^{-2})}$ is
- (b) 9
- (c) 3
- $(d) \frac{1}{3}$
- 29. $\left(\frac{256}{625}\right)^{-\frac{3}{4}}$ in its simplified form is equal to

 - (a) $\frac{25}{64}$ (b) $\frac{64}{125}$ (c) $\frac{125}{64}$
- $(d) \frac{64}{25}$
- 30. $(32)^{\frac{1}{5}} \times (125)^{-\frac{1}{3}}$ in its simplified form is equal to
 - (a) $\frac{16}{25}$ (b) $\frac{4}{5}$ (c) $\frac{2}{5}$

- $(d) \frac{2}{25}$

- 31. $\frac{5^{n+2} 6.5^{n+1}}{13.5^n 2.5^{n+1}}$ equals

 - (a) $\frac{5}{3}$ (b) $-\frac{5}{3}$ (c) $\frac{3}{5}$
- $(d) -\frac{3}{5}$

- 32. The value of $[8^{-4/3} \div 2^{-2}]^{1/2}$ is
 - (a) $\frac{1}{2}$ (b) 2
- $(c) \frac{1}{4}$
- (d) 4
- **33.** If *x* is a positive real number, then $\sqrt[4]{3}x^2$ is
 - (a) $x^{1/24}$ (b) $x^{1/6}$ (c) $x^{1/12}$
- (d) $x^{1/20}$
- **34.** If x = 2 and y = 3, then the value of $x^y + y^x$ is
 - (a) 15
 - (b) 17
- (c) 19
- (d) 21

- 35. If $x = 9 4\sqrt{5}$, then $x + \frac{1}{x}$ is equal to

 - (a) $8\sqrt{5}$ (b) $-8\sqrt{5}$ (c) 18
- (d) 81

- **36.** Which of the following is equal to *a*?

- (a) $a^{\frac{13}{7} \frac{5}{7}}$ (b) $\sqrt[12]{\left(a^4\right)^{\frac{1}{3}}}$ (c) $\left(\sqrt{a^5}\right)^{\frac{2}{5}}$ (d) $a^{\frac{13}{7}} \times a^{\frac{7}{13}}$
- 37. Decimal representation of $-\frac{17}{9}$ is
 - (a) 2.125 (b) 2.225 (c) 2.125 (d) 1.175

- 38. If $\frac{3}{7} = 0.\overline{428571}$, then $\frac{5}{7}$ is equal to

 - (a) 0.704125 (b) 0.714285 (c) 0.77132 (d) 0.714381
- 39. If $\sqrt{3} = 1.732$, then the value of $\frac{1}{\sqrt{3}}$ approximately is
 - (a) 0.866 (b) 0.433 (c) 0.288 (d) 0.577

- **40.** If $\sqrt{2} = 1.414$, then the value of $\sqrt{3} \div \sqrt{6}$ up to three places of decimal is
 - (a) 0.235 (b) 0.707 (c) 1.414 (d) 0.471

Chapter 2: Polynomials

MULTIPLE-CHOICE QUESTIONS -

Choose the correct answer from the given four options in the following questions:

1. Which one of the following is a polynomial?

(a)
$$\frac{x^2}{3} - \frac{2}{x^2}$$

(a)
$$\frac{x^2}{3} - \frac{2}{x^2}$$
 (b) $x^3 + \frac{4x^{3/2}}{\sqrt{x}}$ (c) $\sqrt{3y} + 5$ (d) $\frac{x^2 - 1}{x^2 + 1}$

(c)
$$\sqrt{3y} + 5$$

(d)
$$\frac{x^2 - 1}{x^2 + 1}$$

2. The coefficient of x^2 in $(2x^2 - 5)(4 + 3x^2)$ is

$$(a)$$
 2

(
$$d$$
) -7 [CBSE SP 2010]

3. $\sqrt{2}$ is a polynomial of degree

(d)
$$\frac{1}{2}$$
 [CBSE SP 2012]

4. Degree of polynomial $(x^3 - 2)(x^2 + 11)$ is

5. Degree of zero polynomial is

(b) any natural number

(d) not defined

6. Standard form of the polynomial $\frac{1}{x^{-3}} + \frac{x}{8} + 6x^5 + \frac{\sqrt{3}}{5}$ is

(a)
$$x^3 + \frac{x}{8} + 6x^5 + \frac{\sqrt{3}}{5}$$

(b)
$$6x^5 + x^3 + \frac{x}{8} + \frac{\sqrt{3}}{5}$$

(c)
$$6x^5 + \frac{\sqrt{3}}{5} + \frac{x}{8} + x^3$$

(d)
$$x^3 + 6x^5 + \frac{\sqrt{3}}{5} + \frac{x}{8}$$

7. $x^2 + 5x - \frac{1}{2}$ is a

- (a) quadratic polynomial in x
- binomial

(c) monomial

(d) cubic polynomial in x

8. The value of $p\left(\frac{1}{2}\right)$ for $p(z) = z^4 - z^2 + z$ is

- (a) $\frac{7}{16}$ (b) $\frac{5}{16}$ (c) $\frac{3}{16}$

9. If $p(x) = 2x^2 - 3x + 5$, then the value of $\frac{p(0) + p(1)}{p(-1)}$ is

- (a) $\frac{1}{10}$ (b) $\frac{4}{11}$ (c) $\frac{9}{10}$ (d) $\frac{4}{5}$

10.	A polynomial of of (a) 5 terms	degree 5 in x has at (b) 10 terms	most (c) 6 terms	(d) 4 terms
11.	Zero of the polyne	omial $p(x)$, where $p(x)$	$(x) = ax + 1, a \neq 0 \text{ is}$	
	(a) 1		(b) - a	
	(c) 0		$(d) -\frac{1}{a}$	[CBSE SP 2010]
12.	Zeroes of the poly	p(x) = (x + 2)	2) $(x + 5)$ are	
	(a) 2, 5	(b) -2, -5	(c) $\frac{1}{2}$, $\frac{1}{5}$	$(d) - \frac{1}{2}, -\frac{1}{5}$
13.	Zeroes of the poly	ynomial $p(x) = x (x - x)$	-1) ($x - 2$) are	
	(a) $0, -1, 2$	(b) $0, -1, -2$	(c) $0, 1, -2$	(<i>d</i>) 0, 1, 2
14.	Which of the follo	owing is a zero of th	te polynomial $x^3 + 3$	$3x^2 - 3x - 1$?
	(a) -1	(<i>b</i>) −2	(c) 1	(d) 2 [CBSE SP 2011]
15.	The number to be zero, is	e added to the poly	nomial $x^2 - 5x + 4$,	so that 3 becomes its
	(a) 4	(b) - 4	(c) - 2	(d) 2
16.	The number to be	subtracted from th	e polynomial $x^2 - 1$	6x + 30, so that
	15 becomes its zer	400-Q1 000 00 - 00000		
	(a) 15	(b) 16	(c) 30	(d) 0
17.		ose zeroes are $\sqrt{2}$		
	` '	(b) $x - 2$	2 (2)	(d) $x + 2$
18.	10 VI 01	of the polynomial x^2	-2k+2, then the v	alue of <i>k</i> is
	(a) 1	(b) 2	(c) 3	(d) 4
19.	No. 10 (1998)			k has – 3 as its zero, is
	(a) - 9	(b) -3	(c) 9	(<i>d</i>) 12 [CBSE SP 2011]
20.		hen $p(x) = x^3 + 1$ is (
01	` /	(b) 0	(c) 1	(d) 6
21.		hen $x^{51} + 51$ is divid	19.5	(d) 0
22		(b) 50 hen $x^2 + 2x + 1$ is di	(c) - 1	(<i>d</i>) 0
44.	(a) 4	(b) 0		(<i>d</i>) –2 [CBSE SP 2011]
23.	` '	hen $f(x) = x^3 + 4x^2 - $	2 (2)	
20.	(a) 16	(b) 12	(c) 17	(d) 19
24.		of the polynomial 2		
		(b) - 3		(d) 2
25.	` '	of $x^4 - a^2x^2 + 3x - 6$	` '	
	(a) 0		(c) - 1	(d) 2
26.	(x + 1) is a factor of	of the polynomial		
	(a) $x^3 + x^2 - x + 1$		(b) $x^3 + x^2 + x + 1$	
	(c) $x^4 + x^3 + x^2 + x^2$	1	$(d) \ x^4 + 3x^3 + 3x^2 + 3x^4 + 3x^2 + 3x^4 + 3x^2 + 3x$	+x+1

27. The common factor in $x^2 - 1$, $x^4 - 1$ and $(x - 1)^2$ is

(a)
$$x - 1$$

(b)
$$x + 1$$

(a)
$$x-1$$
 (b) $x+1$ (c) x^2-1

(d)
$$x^2 + 1$$

28. The factorisation of $-x^2 + 5x - 6$ yields

$$(a) - (x-2)(3-x)$$

$$(b) - (2-x)(3-x)$$

(c)
$$(x-2)(x-3)$$

(d)
$$(2 + x)(3 - x)$$

[CBSE SP 2011]

29. The value of $(348)^2 - (347)^2$ is

$$(a) (1)^2$$

30. The expansion of $(x + y + z)^2$ is

(a)
$$x^2 + y^2 + z^2 - 2xy - 2yz - 2zx$$

(b)
$$x^2 + y^2 + z^2 + 2xy + 2yz + 2zx$$

(c)
$$x^2 + y^2 + z^2 - xy - yz - zx$$

(d)
$$x^2 + y^2 + z^2 + xy + yz + zx$$

31. The expansion of $(x - y)^3$ is

(a)
$$x^3 + y^3 + 3x^2y + 3xy^2$$

(b)
$$x^3 + y^3 - 3x^2y + 3xy^2$$

(c)
$$x^3 - y^3 - 3x^2y + 3xy^2$$

(d)
$$x^3 - y^3 + 3x^2y - 3xy^2$$

32. The product $\left(\frac{x}{2} - 3y\right)\left(3y + \frac{x}{2}\right)\left(\frac{x^2}{4} + 9y^2\right)$ is equal to

(a)
$$\frac{x^4}{16} + 81y^4$$

(b)
$$\frac{x^4}{81} + 16y^4$$

(c)
$$\frac{x^4}{81} - 16y^4$$

(a)
$$\frac{x^4}{16} + 81y^4$$
 (b) $\frac{x^4}{81} + 16y^4$ (c) $\frac{x^4}{81} - 16y^4$ (d) $\frac{x^4}{16} - 81y^4$

33. $75 \times 75 + 2 \times 75 \times 25 + 25 \times 25$ in simplified form is equal to

- (a) 10000
- (b) 6250
- (c) 7500
- (d) 3750

34. $\frac{8.83 \times 8.83 - 2.17 \times 2.17}{6.66}$ in its simplified form is equal to

- (a) 9
- (b) 10
- (c) 11
- (d) 12

35. If x + y + z = 0, then $x^3 + y^3 + z^3$ is equal to

- (a) $x^2 + y^2 + z^2 + 3xyz$
- (b) 3xyz
- (c) $3x^2y^2z^2$

(d) $x^2 + y^2 + z^2 - xy - yz - zx$

36. If $49x^2 - y = \left(7x + \frac{1}{2}\right)\left(7x - \frac{1}{2}\right)$, then the value of *y* is

- (a) 0
- (b) $\frac{1}{4}$
- (c) $\frac{1}{\sqrt{2}}$

37. If the area of a rectangle is $4x^2 + 4x - 3$, then its possible dimensions are

(a) 2x - 3, 2x + 1

(b) 2x - 1, 2x + 3

(c) 3x + 1, 2x - 3

(d) 3x - 1, 2x + 3

38. The factors of $12y^2 - y - 6$ are

(a) (12y-1)(y+6)

(b) (12y + 1)(y - 6)

(c) (3y-2)(4y+3)

(d) (3y + 2)(4y - 3)

39. The factors of $\frac{1}{2} - \frac{x^2}{50}$ are

(a) $\frac{1}{2} \left(1 - \frac{x}{5} \right) \left(1 - \frac{x}{5} \right)$

(b) $\frac{1}{2} \left(\frac{1}{5} + x \right) \left(\frac{1}{5} - x \right)$

(c)
$$\frac{1}{2}\left(1+\frac{x}{5}\right)\left(1-\frac{x}{5}\right)$$

$$(d) \quad \frac{1}{2} \left(1 + \frac{x}{5} \right) \left(1 + \frac{x}{5} \right)$$

40. The factors of $a^3 + 27$ are

(a)
$$(a + 3) (a^2 + 3a + 9)$$

(b)
$$(a + 3) (a^2 - 3a + 9)$$

(c)
$$(a-3)(a^2-3a+9)$$

(d)
$$(a-3)(a^2+3a+9)$$

41. $\sqrt{2a^2 + 2\sqrt{6}ab + 3b^2}$ in its simplified form is equal to

(a)
$$\left(\sqrt{2}a - \sqrt{3}b\right)$$

(b)
$$\left(\sqrt{2}a + \sqrt{3}b\right)$$

(c)
$$\left(\sqrt{3}a + \sqrt{2}b\right)$$

(d)
$$\left(\sqrt{3}a - \sqrt{2}b\right)$$

42. For the polynomial (x + 2) (x - 2), the values of p(0), p(1), p(-2) respectively are

(a)
$$0, 3, -4$$

$$(b) -1, 0, 3$$

$$(c) -4, -3, 0$$

$$(d)$$
 1, 4, – 3

43. If $p(x) = x^2 - 4x + 3$, then the value of $p(2) - p(-1) + p(\frac{1}{2})$ is

(a)
$$\frac{31}{4}$$

(b)
$$-\frac{31}{4}$$
 (c) $\frac{21}{4}$

(c)
$$\frac{21}{4}$$

$$(d) - \frac{21}{4}$$

44. If polynomial $x^3 - 2mx^2 + 16$ is divisible by x + 2, then the value of m is

$$(a) - 2$$
 $(b) 2$

$$(b)$$
 2

$$(d) - 1$$

45. If 2x - 1 is a factor of $8x^4 + 4x^3 - 16x^2 + 10x + a$, then the value of a is

$$(a) - 2$$

$$(d) - 1$$

46. $\left(2x+\frac{1}{3}\right)^2-\left(x-\frac{1}{2}\right)^2$ in its factorised form is equal to

(a)
$$\left(x-\frac{1}{6}\right)\left(3x+\frac{5}{6}\right)$$

(b)
$$\left(3x+\frac{1}{6}\right)\left(x-\frac{5}{6}\right)$$

(c)
$$\left(x + \frac{1}{6}\right) \left(3x - \frac{5}{6}\right)$$

$$(d) \left(3x - \frac{1}{6}\right)\left(x + \frac{5}{6}\right)$$

47. The expanded form of $(3a - 5b - c)^2$ is

(a)
$$9a^2 + 25b^2 + c^2 - 30ab + 10bc - 6ac$$

(b)
$$9a^2 + 25b^2 + c^2 + 30ab - 10bc + 6ac$$

(c)
$$9a^2 + 25b^2 + c^2 - 30ab - 10bc + 6ac$$

$$(d) \ 9a^2 + 25b^2 + c^2 + 30ab + 10bc - 6ac$$

48. The product of $\left(\frac{x}{2} + 2y\right) \left(\frac{x^2}{4} - xy + 4y^2\right)$ is equal to

(a)
$$\frac{x^3}{6} + 6y^3$$

(b)
$$\frac{x^3}{8} + 8y^3$$

(c)
$$\frac{x^3}{8} - 8y^3$$

(a)
$$\frac{x^3}{6} + 6y^3$$
 (b) $\frac{x^3}{8} + 8y^3$ (c) $\frac{x^3}{8} - 8y^3$ (d) $\frac{x^3}{6} - 6y^3$

49. Factors of $a^3 - 2\sqrt{2}$ b^3 are

(a)
$$(a - \sqrt{2}b)(a^2 + \sqrt{2}ab + 2b^2)$$

(a)
$$(a - \sqrt{2}b)(a^2 + \sqrt{2}ab + 2b^2)$$
 (b) $(a - 2\sqrt{2}b)(a^2 - \sqrt{2}ab + 2b^2)$

Scanned with CamScanner

(c)
$$(a + \sqrt{2}b)(a^2 - \sqrt{2}ab + 2b^2)$$

(c)
$$(a + \sqrt{2}b)(a^2 - \sqrt{2}ab + 2b^2)$$
 (d) $(a + \sqrt{2}b)(a^2 + \sqrt{2}ab + 2b^2)$

50. The expanded form of $\left(x + \frac{1}{3}\right)^3$ is

(a)
$$x^3 + \frac{1}{27} + 3x^2 + \frac{1}{3}x$$

(b)
$$x^3 + \frac{1}{27} + x^2 + \frac{1}{3}x$$

(c)
$$x^3 + \frac{1}{9} + 3x^2 + 3x$$

(d)
$$x^3 + \frac{1}{27} + 3x^2 + \frac{1}{3}x$$

51. The value of $10^3 - (5)^3 - (5)^3$ is

$$(d)$$
 500

52. If $x + \frac{1}{x} = 8$, then the value of $x^2 + \frac{1}{x^2}$ is

$$(d)$$
 60

53. The value of $p^3 - q^3$ if p - q = -8, pq = -12 is

$$(a) - 244$$

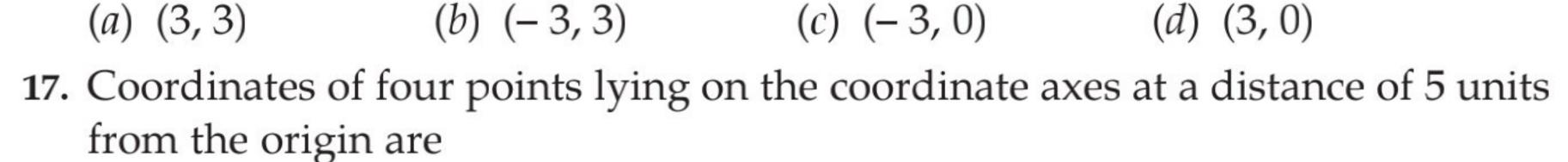
$$(a) - 244$$
 $(b) - 240$ $(c) - 224$ $(d) - 260$

$$(c) - 224$$

$$(d) - 260$$

54. If $9x^2 - 30x + k$ is a perfect square then the value of k is

55. The value of $a^2 + b^2 + c^2$, if a + b + c = 13 and ab + bc + ca = 27 is


Chapter 3: Coordinate Geometry

	MULTIPLE-CHO	ICE QUESTIONS ——
ho	ose the correct answer from the give	n four options in the following questions:
1.	The measure of angle between the tv	wo coordinate axes is
	(a) 180° (b) 0°	(c) 90° (d) 360°
2.	Points $(0, 3)$ and $(0, -7)$ lie	
	(a) on the x-axis	(b) in the first quadrant
	(c) on the y-axis	(d) in the second quadrant
3.	Point (-3, 0) lies	
	(a) in the third quadrant	(b) on the negative direction of y-axis
	(c) in the fourth quadrant	(d) on the negative direction of x -axis
4.	If y-coordinate of a point is zero, the	en this point always lies
	(a) in the second quadrant	(b) on the x-axis
	(c) in the first quadrant	(d) on the y-axis
5.	Signs of the abscissa and ordinat	e of a point in the third quadrant are
	respectively	
	(a) -, - $(b) +, +$	(c) +, - $(d) -, +$
6.	A point both of whose coordinates a	re positive will lie in the
	(a) first quadrant	(b) second quadrant
	(c) third quadrant	(d) fourth quadrant
7.	The points $(2, -3)$ and $(-3, 2)$ lie in the	ne
	(a) first and second quadrants respe	ectively
	(b) fourth and second quadrants res	
	(c) second and third quadrants resp	
	(d) second and fourth quadrants res	
8.		(-3, -4), and T (-6, 3) are plotted on the
	graph paper, then the point(s) in the	
•	(a) P and R (b) only T	(c) Q and R (d) P and T
9.	Ordinate of a point is positive in the	
	(a) first and second quadrants	(b) first and third quadrants
10	(c) second and third quadrants	(d) third and fourth quadrants
10.	A point with abscissa – 3 and ordina	
	(a) first quadrant	(b) second quadrant
1-1	(c) third quadrant	(d) fourth quadrant
11.	The abscissa and ordinate of the original	gin are

Mat	hem	natics	- C	lass	9

Scanned with CamScanne

Math	Mathematics - Class 9						
	(a) (0, 0)	(<i>b</i>) (1, 1)	(c) $(-1, -1)$	(<i>d</i>) (2, 2)			
12.	Coordinates of a particle negative direction		nits away from the	<i>x</i> -axis and lies on the			
	(a) (-8, 0)	(b) $(8,0)$	(c) $(0, -8)$	(d) $(0, 8)$			
13.	The perpendicular	r distance of the po	int P (3, 4) from the	e x-axis is			
	(a) 3 units	(b) 4 units	(c) 1 unit	(d) 7 units			
14.	If two points have	the same abscissa b	ut different ordinate	es, then the line joining			
	them is parallel to)					
	(a) both x -axis and	d y-axis	(b) neither x-axis nor y-axis				
	(c) y-axis		(d) x -axis				
15.	The points having	same signs of abso	cissa and ordinate l	ie in			
	(a) first or second	quadrants	(b) first or third qu	uadrants			
	(c) second or four	rth quadrants	(d) second or third	d quadrants			
16.	y-axis. It is made to	o slide along the x -a	ixis and its new pos	nce of 3 units from the ition is on the negative as it was in the original			

(a)
$$(5,0), (0,5), (-5,0), (0,-5)$$
 (b) $(5,5), (-5,-5), (5,-5), (-5,5)$

position. Then, the coordinates of its new position are

$$(c)$$
 $(5,0)$, $(5,5)$, $(-5,0)$, $(-5,-5)$ (d) $(0,5)$, $(0,-5)$, $(5,-5)$, $(-5,-5)$

18. The verbal sentence 'The difference of the ordinate and abscissa of a point is 1' is represented by the equation

(a)
$$x - y = 0$$
 (b) $x - y = 1$ (c) $x + y = 1$ (d) $y - x = 1$

19. Coordinates of the point lying on the y-axis satisfying the equation 2x - 5y = 10 are

(a)
$$(2,0)$$
 (b) $(0,2)$ (c) $(0,-2)$ (d) $(-2,0)$

20. Coordinates of the point at which the line
$$5x + 3y = 15$$
 intersects the *x*-axis are (a) $(0,3)$ (b) $(3,0)$ (c) $(-3,0)$ (d) $(0,-3)$

Chapter 4: Linear Equations in Two Variables

		MULTIPLE-CHO	ICE QUESTIONS		
Cho	ose the correct an	swer from the give	n four options in th	ne follo	wing questions:
1.	'Twice the ordina	ate of a point decre	ased by three times	s the ab	scissa is 6.' The
		•	n of an equation is		
	(a) 2x - 3y = 6		(b) $2y - 3x = 6$		
	(c) 3x - 2y = 6		(d) 3y - 2x = 6		
2.	The condition that in two variables i	-	+by+c=0 represe	ents the	linear equation
	(a) $a \neq 0, b = 0$		(b) $b \neq 0$, $a = 0$		
	(c) $a = 0, b = 0$		(d) $a \neq 0, b \neq 0$		[CBSE SP 2011]
3.	The linear equation	on of the type $y = n$	$nx, m \neq 0$ has		
	(a) infinitely man	ny solutions.	(b) a unique solu	tion.	
	(c) only solution	x = 0, y = 0.	(d) solution $m = 0$).	[CBSE SP 2011]
4.	$x - 4 = \sqrt{3} y \exp r$	essed in the form a	ax + by + c = 0 is		
	(a) $x - \sqrt{3}y - 4 =$: 0	(b) $x + \sqrt{3}y + 4 =$	= 0	
	(c) $x - \sqrt{3}y + 4 =$	= 0	(d) $x + \sqrt{3} y - 4 =$	= 0	
5.	$\frac{y}{5} = 1$, expressed	as an equation in	two variables in sta	ndard	form is
	(a) $x + y + 5 = 0$		(b) $x - y - 5 = 0$		
	(c) $0 \cdot x + 1 \cdot y - 5 =$	= 0	(d) $x - y + 5 = 0$		
6.	The coefficients o	of x and y respective	ely in the equation	5x - y =	= 10 are
	(a) 5, 1	(b) $1, \frac{1}{5}$	(c) 1, 5	(d) 5,	- 1
7.	The equation $x =$	9, in two variables	, can be written as		
	(a) $1 \cdot x + 1 \cdot y = 9$	$(b) \ 1 \cdot x + 0 \cdot y = 9$	(c) $0 \cdot x + 1 \cdot y = 9$	(<i>d</i>) 0·	x + 0.y = 9
8.	If (4, 19) is a solut	tion of the equation	y = px + 3, then th	ne value	of p is
	(a) 3	(b) 4	(c) 5	(d) 6	
9.	If $(0, y)$ is a soluti	on of the equation	6x - y = 0, then the	graph	of this equation
	(a) passes throug	the origin			
	(b) is parallel to t	he x-axis			
	(c) is parallel to t	he <i>y</i> -axis			
	(d) is neither para	allel to any of the co	ordinate axes nor pa	asses th	rough the origin

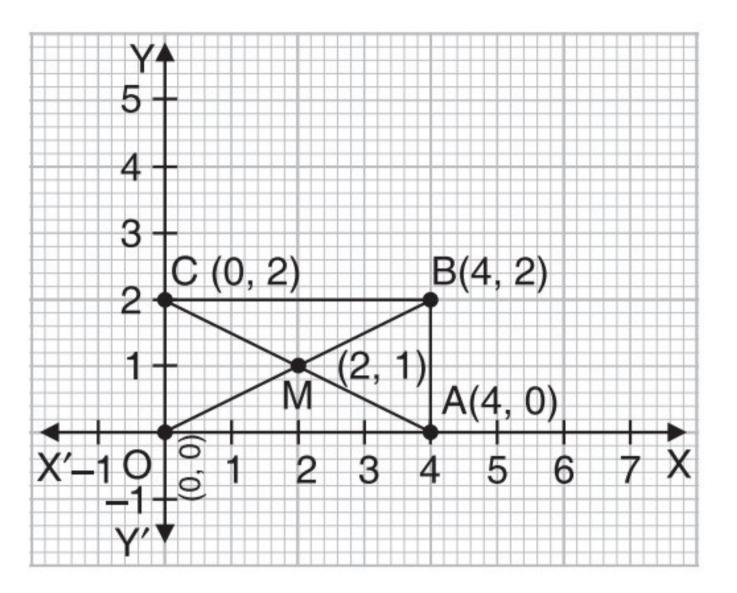
10. If (2, 0) is a solution of the linear equation 2x + 3y - k = 0, then the value of k is

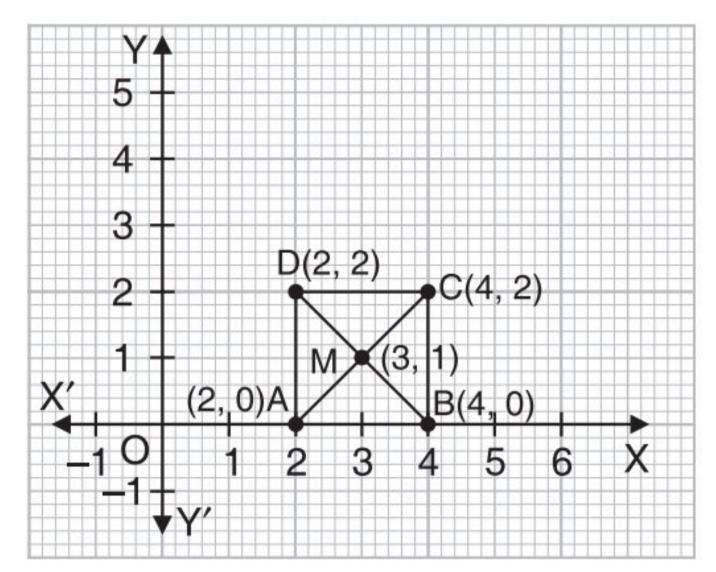
(c) 2

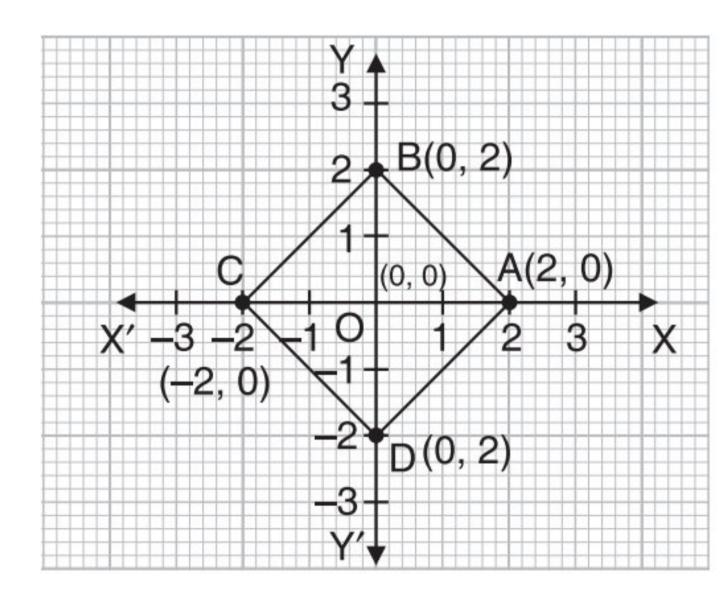
(b) 4

(a) 6

(*d*) 5


Math	athematics - Class 9						
11.	Any point on the	line $y = x$ is of the	e form	ı			
	(a) (a, a)	(b) $(0, a)$	(c)	(a, 0)	(<i>d</i>)	(a, -a)	
12.	Any solution of the	he linear equation	1 3x +	$0 \cdot y + 7 = 0$	in two	variables is	of the
	(a) $\left(n, \frac{-7}{3}\right)$	(b) $\left(\frac{-7}{3}, m\right)$	(c)	$\left(0,\frac{-7}{3}\right)$	(d)	(-7, 0)	
	where n and m ar	e real numbers.					
13.	The equation of x	-axis is of the forr	n				
	(a) $x = 0$		(<i>b</i>)	x + y = 0			
	(c) $y = 0$		(<i>d</i>)	x = y		[CBSE S	P 2010]
14.	Which statement	is true about the §	graph	y = 5?			
	(a) It goes throug	h the origin	(<i>b</i>)	It is paralle	l to <i>x</i> -ax	is	
	(c) It is parallel to	y-axis	(<i>d</i>)	It has an <i>x</i> -	intercep	t	
15.	The graph of $x = 8$	5 is a line					
	(a) parallel to x-a:	xis at a distance o	f 5 ur	its from the	origin		
	(b) parallel to y-a:	xis at a distance o	f 5 ur	its from the	origin		
	(c) making an int	ercept of 5 on the	y-axi	S			
	(d) making an int	ercept of 5 on bot	h the	axes			
	The measure of ar	ngle between the g	raph	lines of the e	•		x = 7 is
	(a) 0°	(b) 45°	(c)	90°	(<i>d</i>)	75°	
17.	If a linear equation	n has solutions (0,	, 0), (-	3, 3) and (3,	, -3), the	en it is of th	e form
	(a) y - 2x = 0			x + y = 0			
	$(c) \ y - x = 0$,	x - y = 0			
18.	The negative solu	tions of the equat				s lie in the	
	(a) 1st quadrant		2. 5	2nd quadra			
	(c) 3rd quadrant			4th quadra	nt		
19.	The point of the form	orm (a, a) always					
	(a) x -axis		130 300	y-axis	0		
	(c) line $y = x$			line $x + y =$		70	
20.	Which of the follo	owing is a solution	1009-20	•		7 ?	
	(a) $x = 3, y = -5$			x = 3, y = 5 x = 3, y = 2			
	(c) $x = 0, y = 7$		(u)	$\lambda = 0, y = 2$			


[CBSE SP 2011]


- 21. If we multiply or divide both sides of a linear equation with a non-zero number, then the solution of the linear equation
 - (a) changes
 - (b) remains the same
 - (c) changes in case of multiplication only
 - (d) changes in case of division only

22.	How many linear	equations in x and	y can be satisfied b	y x = 3 and y = 1?
	(a) Only one		(b) Two	
	(c) Three		(d) Infinitely many	y
23.	The graph of $2x =$	1 is parallel to the		
	(a) x-axis at a dist	ance of 1 unit	(b) y-axis at a dista	ance of 1 unit
	(c) x-axis at a dist	ance of $\frac{1}{2}$ unit	(d) y-axis at a dista	ance of $\frac{1}{2}$ unit
24.	The graph of the l	inear equation $3x$ –	y = 2 cuts the y-ax	is at the point
	(a) $(0, 2)$		(b) $(0, -2)$	
	(c) (-2, 0)		(d) $(2,0)$	
25.	The graph of the I	linear equation <i>x</i> –	2y = 3 is a line who	ich meets the x-axis at
	(a) (3, 0)	(b) (0, 3)	(c) (-3, 0)	(d) (0, -3)
26.		een the graph lines		
		(b) 5 units	(c) 7 units	(<i>d</i>) 12 units
27.		the line $y = x + 5$ is		
	(a) 0	(b) 5	(c) 2	(d) 3
28.	` '	$\sin 2x + cy = 8$ has eq	ual values of x and	y for its solution when
	c is equal to	J 1		
	(a) $\frac{8+2x}{y}$, $y \neq 0$		(b) $8-2x$	
	$\frac{y}{y}$		$(b) \ \frac{8-2x}{y}, y \neq 0$	
	(c) $\frac{2-8x}{y}$, $y \neq 0$		$(d) \ \frac{2+8x}{y}, y \neq 0$	
	y		y	
29.		•	tion 2x + 1 = x - 3 o	n the number line and
	cartesian plane res			
	(a) infinitely man	y solutions, one		
	(b) one, two			
	(c) two, one			
••	(<i>d</i>) one, infinitely		1 1	1
30.	its abscissa is	ich that each point o	on its graph has its o	ordinate equal to twice
		(b) y = 2x	(c) $y - 2u$	(d) y = 1 - 2
21				on $2x + 5y = 19$, whose
			of the inical equali	on $2x + 3y - 17$, whose
	ordinate is $1\frac{1}{2}$ tin	nes its abscissa is		
	(a) (3, 2)	(<i>b</i>) (2, 3)	(c) $\left(2,\frac{5}{2}\right)$	$(d) \left(\frac{5}{2},2\right)$
32.		and <i>y</i> intercepts no <i>x</i> -axis and <i>y</i> -axis re	, , ,	of the linear equation
	(a) $2:3$	(b) 1:3	(c) 3:2	(d) 3:1
		` /		

- 33. In the given figure, if OABC is a rectangle whose diagonals BO and CA intersect at M (2, 1), then the equations of the diagonals BO and CA respectively are
 - (a) x = 2y, x + 2y = 4
 - (b) x = y, x + y = 0
 - (c) 2x = y, 2x + y = 0
 - (d) x = 3y, x + 3y = 0
- 34. In the given figure, if ABCD is a square whose diagonals AC and BD intersect at M(3, 1) then the equations of the diagonals AC and BD respectively are
 - (a) x + y = 2, x y = 4
 - (b) x = 2y, x + y = 3
 - (c) 2x = y, x y = 3
 - (d) x y = 2, x + y = 4
- **35.** In the given figure, if ABCD is a square, then the diagonal AC divides it into two congruent triangles each of area
 - (a) 2 sq units
 - (b) 3 sq units
 - (c) 4 sq units
 - (d) 5 sq units

Chapter 5: Introduction to Euclid's Geometry

	-	MULTIPLE-CHOI	CE	QUESTIONS -				
Cho	hoose the correct answer from the given four options in the following questions:							
1.	A pyramid is a so	lid figure, the base	of v	vhich is				
	(a) only a square		(b)	only a triangle				
	(c) only a rectang	le	(<i>d</i>)	any polygon				
2.	The side faces of a	a pyramid are						
	(a) squares	(b) triangles	(c)	polygons	(d) trapeziums			
3.	In ancient India, t	he shapes of altars	use	d for household	rituals were			
	(a) square and red	ctangular	(b)	square and circ	cular			
	(c) triangular and	rectangular	(<i>d</i>)	square and tria	ngular			
4.	In ancient India, th	ne shapes of altars u	sed	for public worsh	nip were combinations			
	of							
	(a) circles, square	s and rectangles	(b)	triangles, circle	es and rectangles			
	(c) circles, trapezi	ums and squares	(d)	rectangles, tria	ngles and trapeziums			
5.	The number of in	terwoven isosceles	tria	ngles in <i>sriyantı</i>	ra (in the Atharvaveda)			
	is							
	(a) seven	(b) eight	<i>(c)</i>	nine	(d) ten			
6.	•				ctions were kiln fired			
	to the same transfer of the sa	gth: breadth: thick						
		(b) 4:4:1			(<i>d</i>) 1:2:3			
7.		s famous treatise "7						
	(a) 9 chapters	(b) 11 chapters	(c)	12 chapters	(d) 13 chapters			
8.	Which of the follo	wing are known as	s the	boundaries of	solids?			
	(a) curves	(b) lines	(c)	points	(d) surfaces			
9.	The three steps from	om solids to points	are:					
	(a) Solids-surface	s-lines-points		Solids-lines-su	•			
	(c) Lines-points-s	surfaces–solids	(d)	Lines-surfaces	-points-solids			
10.	The number of dia	mensions, a solid h	as:					
	(a) 0	(b) 1	(c)	2	(d) 3			
11.	The number of dia	mensions, a surface	has	S:				
	(a) 1	(b) 2	(c)	3	(d) 0			
12.	The number of dia	mensions, a point h	as:					
	(a) none	(b) 1	(c)	2	(d) 3			

20. The interwoven isosceles triangles in *sriyantra* are arranged in such a way that

(c) 45

(b) second Axiom

(d) fourth Axiom

(d) 50

Scanned with CamScanne

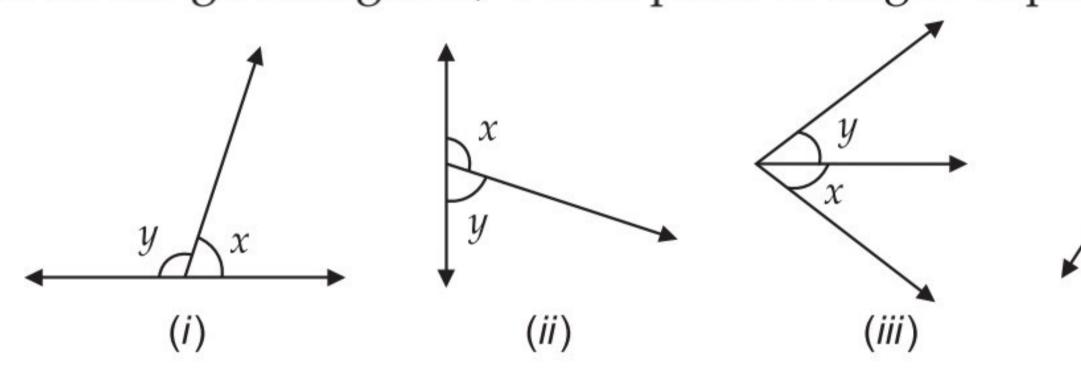
that illustrates the relative ages of X and Z is the

the number of subsidiary triangles they produce are

(b) 43

(a) first Axiom

(c) third Axiom


(a) 40

Chapter 6: Lines and Angles

 MULTIPLE-CHOICE	QUESTIONS
MOLIN EL ONOISE	QUEUTION

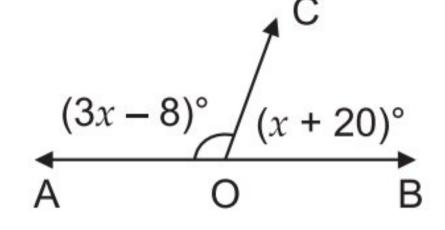
Choose the correct answer from the given four options in the following questions:

- 1. The measure of an angle which is 24° more than its complement is
 - (a) 66°
- (b) 57°
- (c) 156°
- (d) 114°
- 2. The measure of an angle which is 32° less than its supplement is
 - (a) 148°
- (b) 58° (c) 74°
- (d) 122°
- 3. The measure of an angle which is four times its complement is
 - (a) 78°
- (b) 76°
- (c) 72°
- 4. If the supplement of an angle is 4 times of its complement, then the angle is
 - (a) 60°
- (b) 40°
- (c) 50°
- (d) 70°
- 5. If two complementary angles are in the ratio 2:3, then the angles are
 - (a) 58°, 32°
- (b) 50°, 40°
- (c) 56°, 34°
- (d) 36°, 54°
- 6. $\angle P$ and $\angle Q$ are complementary angles. If they are represented by the expressions $m\angle Q = y$ and $m\angle P = 2y + 30^{\circ}$, then their measures respectively are
 - (a) 70°, 20°
- (b) 20°, 70°
- (c) 10°, 80°
- (d) 80°, 10°
- 7. In the given figures, which pairs of angles represent a linear pair?

- (a) (i) and (iii)
- (b) (iii) and (iv)
- (c) (iii) and (v)
- (*d*) (*i*), (*ii*) and (*v*)

(iv)

[CBSE SP 2010]

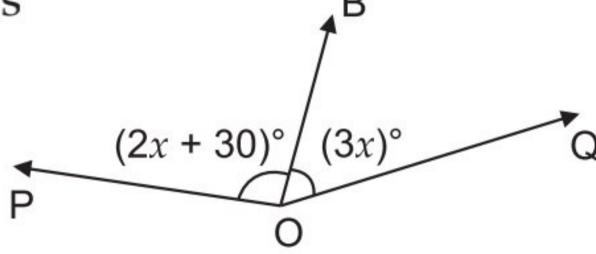

(*v*)

- 8. If in the given figure, OA and OB are opposite rays, then the value of x is
 - (a) 40

(b) 44

(c) 46

(d) 42

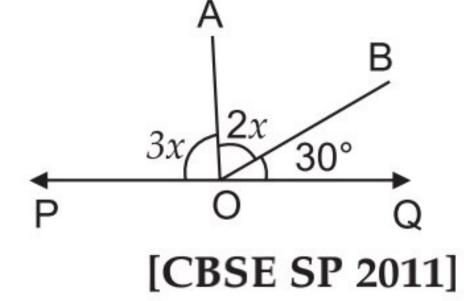


- 9. The value of x that will make POQ a straight line is
 - (a) 30

(b) 25

(c) 35

(*d*) 40

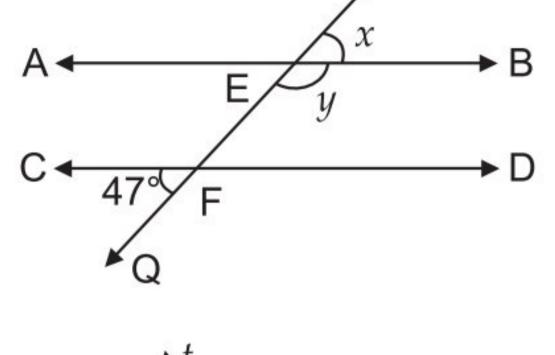


- 10. In the given figure, if POQ is a straight line, then the value of *x* is
 - (a) 20°

(b) 30°

40° (c)

(*d*) 50°

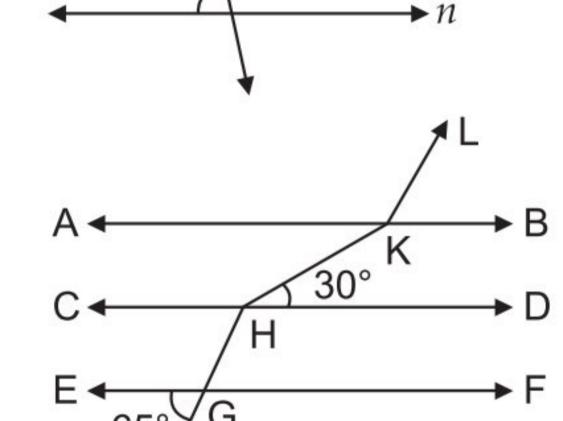


- **11.** In the given figure, $\angle AOC = 50^{\circ}$, then $\angle AOD + \angle COB$ is equal to
 - (a) 100°
 - (b) 140°
 - (c) 260°
 - (d) 130°
- **12.** In the given figure AB \parallel CD. Transversal PQ intersects AB at E and CD at F. Given, \angle CFQ = 47°, the measure of x and y respectively are
 - (a) 30°, 150°

(b) 37°, 143°

(c) 47° , 133°

(d) 39°, 141°

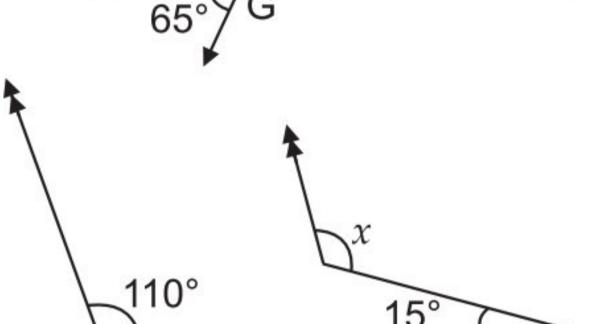


- **13.** In the given figure, $l \parallel m \parallel n$. If x : y = 5 : 4, then the measure of angle z is
 - (a) 40°

(b) 50°

(c) 90°

(d) 80°


→ m

- 14. In the given figure, AB \parallel CD \parallel EF and GH \parallel KL. The measure of angle HKL is
 - (a) 95°

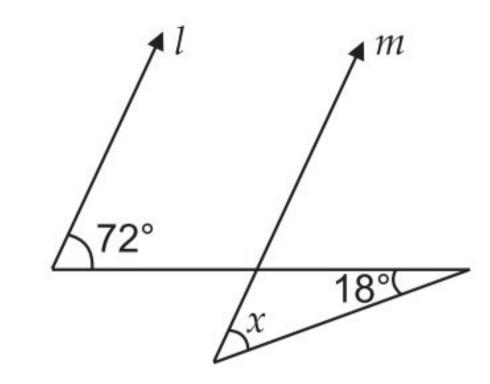
(b) 145°

(c) 130°

(d) 135°

- **15.** The measure of x in the given figure is
 - (a) 125°

(b) 70°

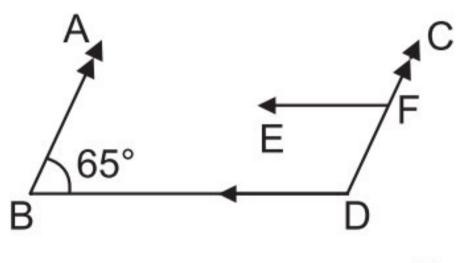

(c) 105°

- (d) 100°
- **16.** In the given figure, if $l \parallel m$, then the value of x is
 - (a) 18°

(b) 72°

(c) 54°

(d) 100°

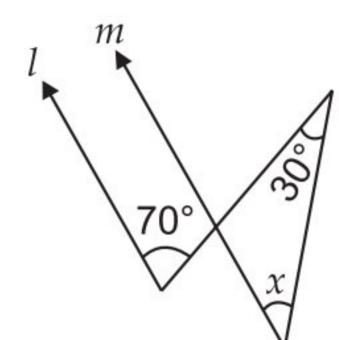


- 17. In the given figure, AB \parallel CD and EF \parallel BD. If \angle ABD = 65°, then the measure of \angle CFE is
 - (a) 120°

(b) 115°

(c) 65°

(d) 165°

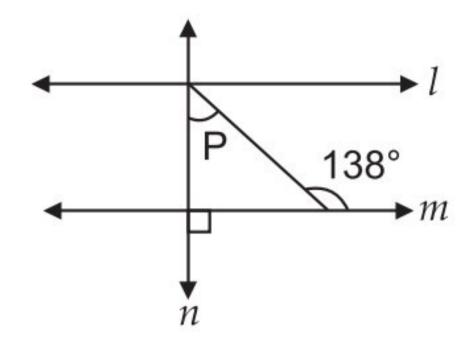


- **18.** In the given figure, if $l \parallel m$, then the measure of x is
 - (a) 70°

(b) 100°

(c) 40°

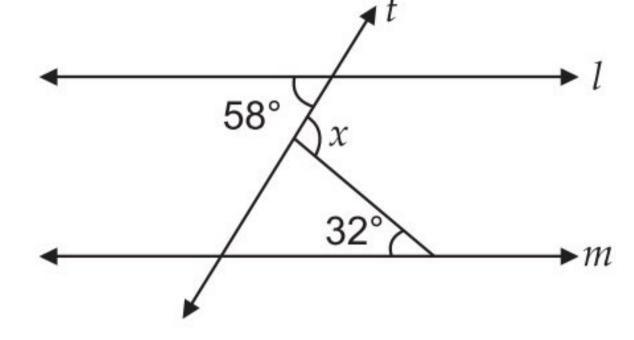
(d) 30°


19. In the adjoining figure, if $l \parallel m$ and $n \perp m$, then the measure of angle P is

(b) 42°

(c) 90°

(d) 38°



- **20.** In the given figure, if $l \parallel m$ then the measure of angle x is
 - (a) 65°

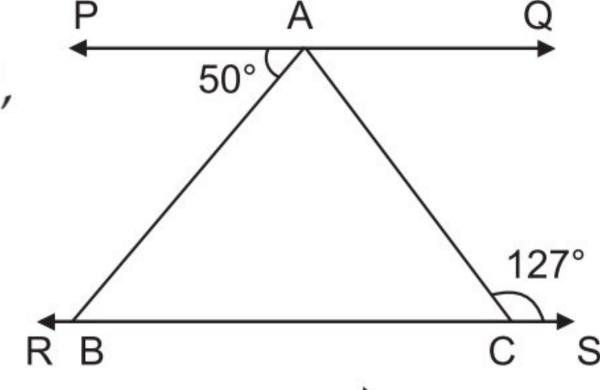
(b) 40°

(c) 25°

(d) 90°

- 21. If two angles of a triangle are complementary, then it is
 - (a) a right triangle

- (b) an obtuse angled triangle
- (c) an acute angled triangle (d) an equilateral triangle
- 22. An exterior angle of a triangle is 110° and its two opposite interior angles are equal. Each of these equal angles is
 - (a) 70°
- (b) 55°
- (c) 35°
- (d) 110°

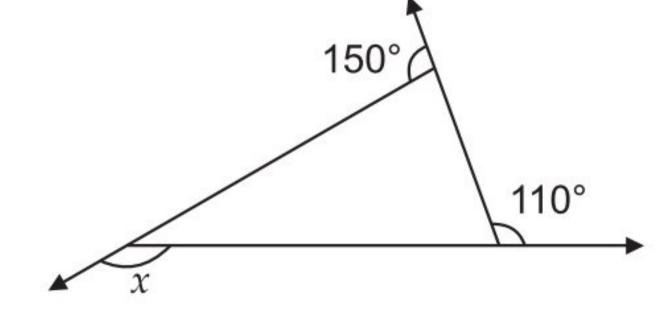

[CBSE SP 2010]

- **23.** The angles of a triangle are in the ratio 4 : 5 : 9. The triangle is
 - (a) an isosceles triangle
- (b) an obtuse angled triangle
- (c) an acute angled triangle (d) a right triangle
- 24. An exterior angle is drawn to a triangle. If this exterior angle is acute, then the triangle must be
 - (a) an acute angled triangle (b) a right triangle
- - (c) an obtuse angled triangle (d) an equilateral triangle
- 25. If the measure of each base angle of an isosceles triangle is seven times the measure of the vertex angle, then the measure of the vertex angle is
 - (a) 84°
- (b) 48°
- (c) 12°
- (d) 24°
- 26. If the vertex angle of an isosceles triangle is 80°, then the measure of an exterior angle to one of the base angles of this triangle is
 - (a) 100°. (b) 120°
- (c) 110°
- (*d*) 130°
- 27. In the given figure, if PQ || RS and \angle ACS = 127°, then ∠BAC is equal to
 - (a) 53°

(b) 77°

(c) 50°

- 107°
- [CBSE SP 2010]

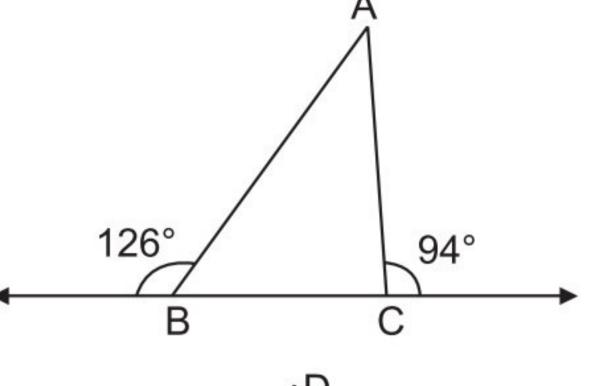


- **28.** The value of *x* in the given figure is
 - (a) 100°

(b) 70°

110°

(d) 150°

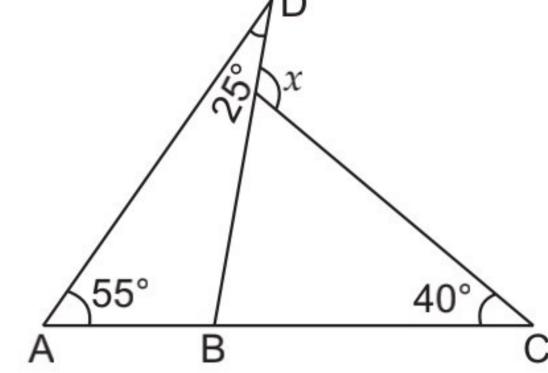


- 29. The base BC of triangle ABC is produced both ways and the measures of exterior angles formed are 94° and 126°. Then, the measure of ∠BAC is
 - (a) 94°

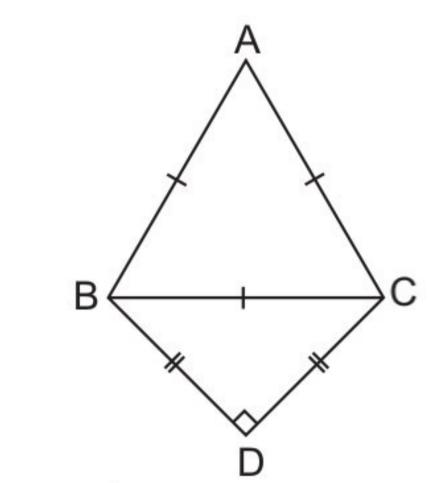
(b) 54°

(c) 40°

(d) 44°



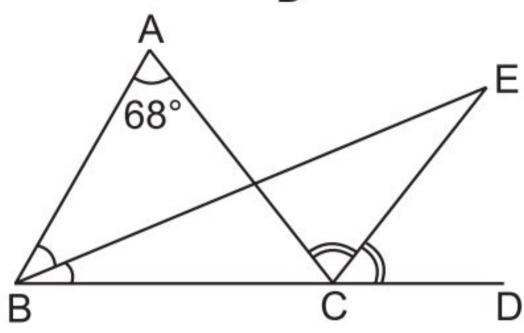
- **30.** The value of x in the given figure is
 - (a) 65°


(b) 95°

(c) 80°

(d) 120°

- **31.** If one of the angles of an isosceles triangle is 125°, then the angle between the bisectors of the other two angles is
 - (a) 125.5°
- (b) 152.5°
- (c) 152°
- (d) 125°
- **32.** \triangle ABC is a right triangle in which \angle A is a right angle. AL is drawn perpendicular to BC. If \angle BAL is 35°, then the measure of \angle ACB is
 - (a) 70°
- (b) 17.5°
- (c) 35°
- (d) 105°
- 33. ABC is an equilateral triangle and BDC is an isosceles triangle right angled at D. ∠ABD is equal to
 - (a) 45°
- (b) 60°
- (c) 105°
- (d) 120°
- [CBSE SP 2011]

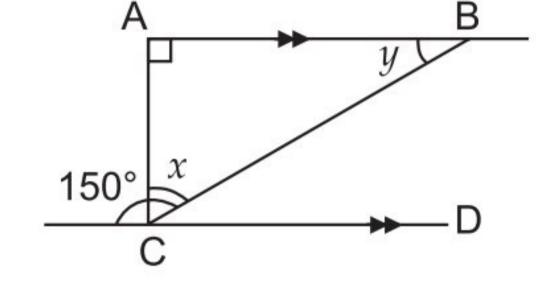


- **34.** The side BC of \triangle ABC is produced to point D. The bisectors of \angle ABC and \angle ACD meet at a point E. If \angle BAC = 68°, then the measure of \angle BEC is
 - (a) 30°

(b) 32°

(c) 36°

(d) 34°

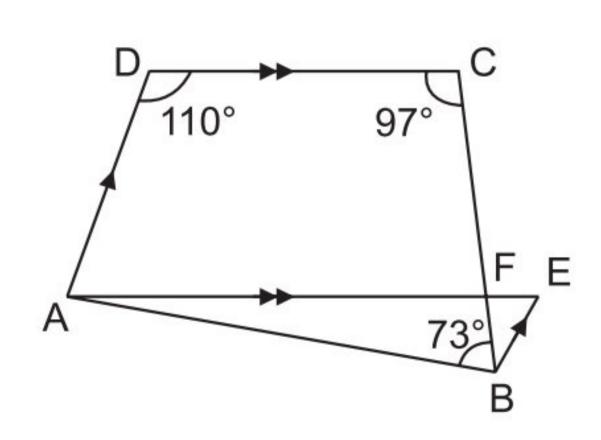


- **35.** In the given figure, if AB \parallel CD, then the values of x and y respectively are
 - (a) 25°, 65°

(b) 60°, 30°

(c) 65°, 25°

(d) 40°, 50°

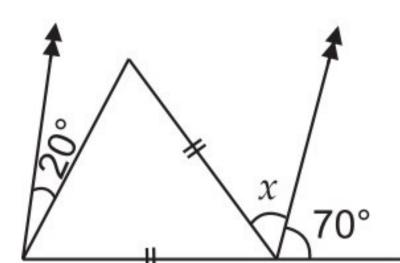


- **36.** In the given figure, ABCD is a quadrilateral in which \angle ABC = 73°, \angle C = 97° and \angle D = 110°. If AE \parallel DC and BE \parallel AD and AE intersects BC at F, then the measure of \angle EBF is
 - (a) 23°

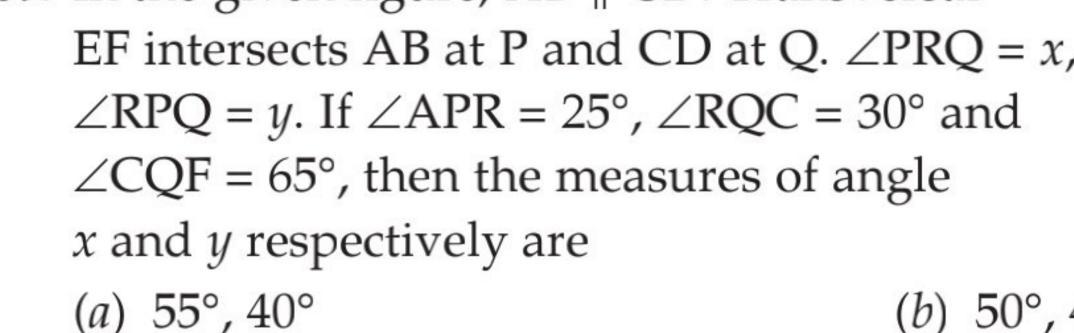
(b) 70°

(c) 10°

(d) 27°


- 37. The angle between the bisectors of two acute angles of a right triangle is
 - (a) 135°
- (b) 120°
- (c) 90°
- (d) 150°

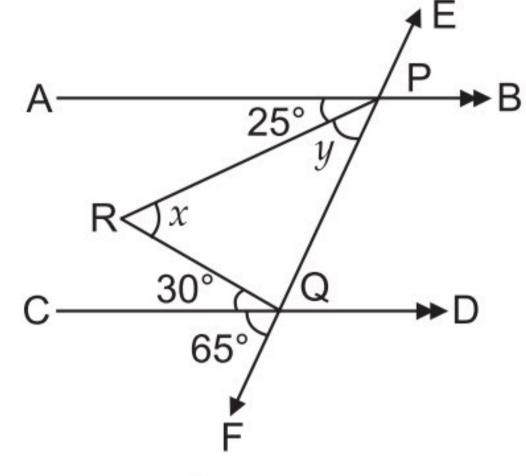
- **38.** The measure of *x* in the given figure is
 - (a) 35°


(b) 25°

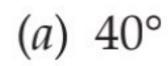
30° (c)

20°

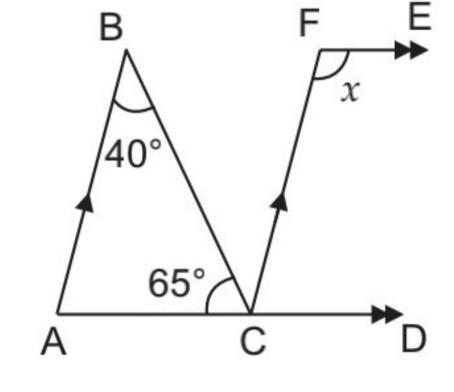
39. In the given figure, AB || CD. Transversal EF intersects AB at P and CD at Q. \angle PRQ = x, $\angle RPQ = y$. If $\angle APR = 25^{\circ}$, $\angle RQC = 30^{\circ}$ and \angle CQF = 65°, then the measures of angle x and y respectively are

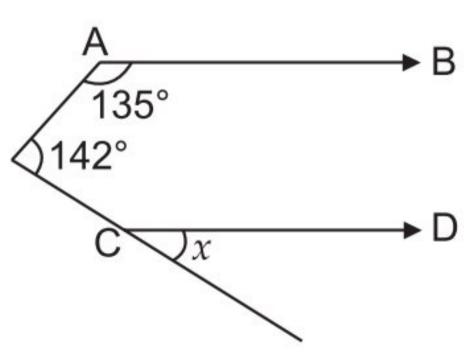


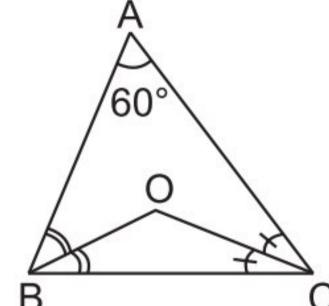
(a) 55°, 40°


50°, 45°

(c) 60°, 35°


(d) 35°, 60°


- 40. If the bisectors of base angles of a triangle enclose an angle of 135°, then the triangle is
 - (a) an acute angled triangle
- (b) an obtuse angled triangle
- (c) an equilateral triangle
- (d) a right triangle
- **41.** In the figure given alongside, if $AB \parallel CF$ and $CD \parallel FE$, then the value of x is


- (b) 65°
- (c) 75°
- (d) 105°

- **42.** In the given figure, if AB \parallel CD, then the value of x is
 - (a) 97°
 - (b) 100°
 - (c) 107°
 - (d) 45°

- **43.** BO and CO, the bisectors of $\angle B$ and $\angle C$ respectively, of $\triangle ABC$, meet at O. If $\angle A = 60^{\circ}$, then the measure of $\angle BOC$ is
 - (a) 100°
 - (b) 90°
 - (c) 120°
 - (d) 150°

- 44. If two parallel lines are cut by a transversal, then the bisectors of the interior angles on the same side of the transversal intersect each other at
 - (a) 60°
- (b) 90°
- (c) 100°
- (d) 120°
- 45. If two parallel lines are intersected by a transversal, then the bisectors of the interior angles form a
 - (a) kite
- (b) rhombus
- (c) rectangle
- (d) trapezium

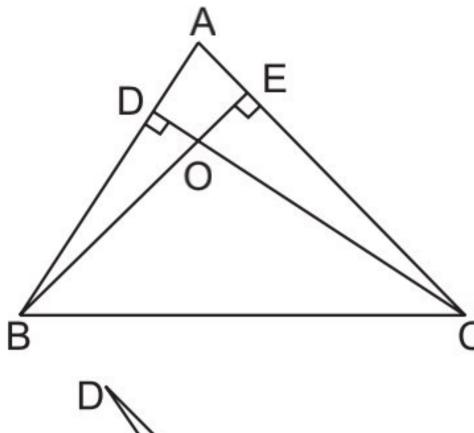
- **46.** ABC is a triangle in which BE \perp AC and CD \perp AB. BE and CD intersect at O. If $\angle BAC = 75^{\circ}$, then the measure of $\angle BOC$ is
 - (a) 100°

(b) 105°

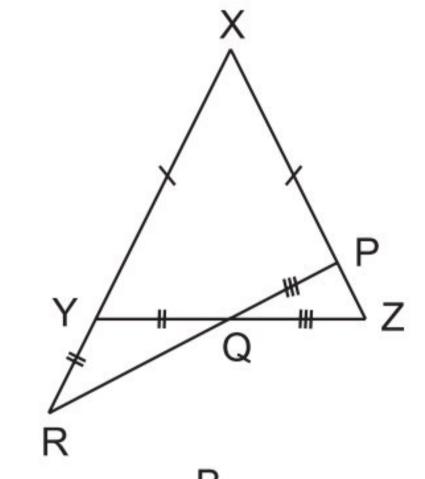
(c) 75°

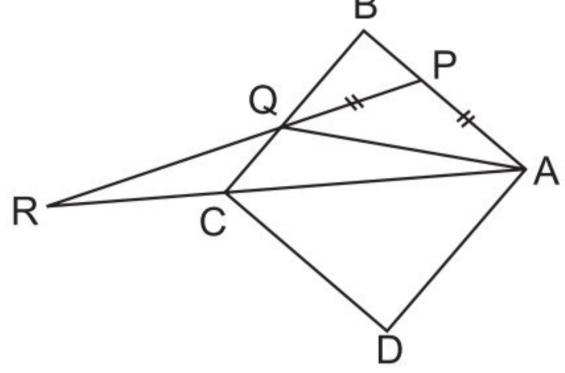
- (d) 115°
- **47.** ABC is a right triangle, right angled at B. BC = BA. D is a point on AC produced and a line DEF cuts CB at E, AB at F. If $\angle D = 13^{\circ}$ and $\angle FAE = 29^{\circ}$, then the measure of ∠FEA is
 - (a) 31°

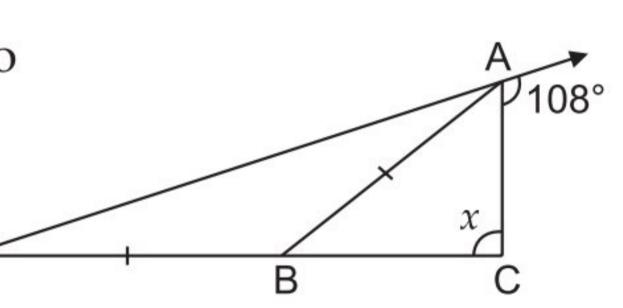
(b) 42°


(c) 29°

- (d) 16°
- **48.** In ΔXYZ , XY = XZ. A straight line cuts XZ at P, YZat Q and XY produced at R. If YQ = YR and QP = QZ, then the measure of \angle PQY is
 - (a) 100°
 - (b) 124°
 - (c) 144°
 - (d) 140°
- **49.** ABCD is a square. If AP = PQ and $\angle QRC = 35^{\circ}$, then the measure of $\angle PAQ$ is
 - (a) 40°
 - (b) 35°
 - (c) 30°
 - (d) 25°
- **50.** In the given figure, if AB divides ∠DAC in the ratio 1:3, then the measure of angle marked x is
 - (a) 108°


(b) 100°


(c) 80°


(d) 90°

Chapter 7: Triangles

	MULTIPLE-CHO	CE	QUESTIONS —	_
ho	ose the correct answer from the giver	n foi	ur options in the follow	ving questions:
1.	In $\triangle ABC$, if $BC = AB$ and $\angle B = 80^{\circ}$ t	hen	∠A will be equal to	
	(a) 80°	(b)	40°	
	(c) 50°	(<i>d</i>)	100°	[CBSE SP 2012]
2.	Two angles measure $(30 - a)^{\circ}$ and $(12$	5 + 2	$(2a)^{\circ}$. If each one is a sup	pplement of the
	other then the value of a is			
	(a) 45°	(b)	25°	
	(c) 35°	(<i>d</i>)	65°	[CBSE SP 2012]
3.	Choose the correct option:			
	(a) A triangle has two right angles.			
	(b) All angles of a triangle are more			
	(c) An exterior angle of a triangle angle.	is a	lways greater than op	oposite interior
	(d) All the angles of a triangle are less	ss th	an 60°.	[CBSE SP 2010]
4.	Which of the following is not a criter			ngles?
	(a) SAS	(b)	SSA	
	(c) ASA	(d)	SSS	[CBSE SP 2010]
5.	In triangles ABC and DEF, $\angle A = \angle D$), ∠I	$B = \angle E$ and $AB = EF$, then	hen are the two
	triangles congruent? If yes, by which	cor	ngruency criterion?	
	(a) yes by AAS	(b)	no	
	(c) yes by ASA	(<i>d</i>)	yes by RHS	[CBSE SP 2010]
6.	In \triangle ABC and \triangle PQR, AB = AC, \angle C =	∠P	and $\angle B = \angle Q$.	
	The two triangles are			
	(a) isosceles but not necessarily cong	grue	nt.	
	(b) neither congruent nor isosceles.			
	(c) isosceles and congruent.			
	(d) congruent but not isosceles.	_		
7.	The sides of a triangle are of length	7 cr	n and 3.5 cm. The leng	gth of the third
	side cannot be	(h)	11	
	(a) 3.6 cm (c) 3.4 cm	` '	4.1 cm 3.8 cm	[CBSE SP 2010]
0		` '		1733 STA
ō.	In triangles ABC and DEF, AB = DF congruent by SAS axiom if	anc	$\mathbf{L} \angle \mathbf{A} = \angle \mathbf{D}$. The two t	nangies will be
	(a) $BC = DE$	(b)	AC = EF	
	(c) $BC = EF$		AC = DE	[CBSE SP 2011]

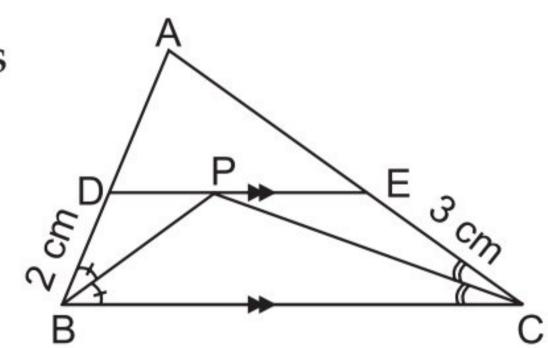
- 9. It is given that $\triangle ABC \cong \triangle FDE$ and AB = 5 cm, $\angle B = 40^{\circ}$ and $\angle A = 80^{\circ}$. Then which of the following is true?
 - (a) DF = 5 cm, \angle F = 60°
- (b) DE = 5 cm, \angle E = 60°
- (c) DF = 5 cm, \angle E = 60°
- (*d*) DE = 5 cm, \angle D = 40°
- **10.** In the given figure, if AB = 7.5 cm, BC = 5 cm and CA = 6.3 cm, then x, y, z arranged in ascending order are
 - (a) x < z < y.

(b) y < x < z.

(c) x < y < z.

- (d) z < y < x.
- **11.** In $\triangle PQR$ if $\angle R > \angle Q$ then
 - (a) QR > PR

(b) PQ > PR

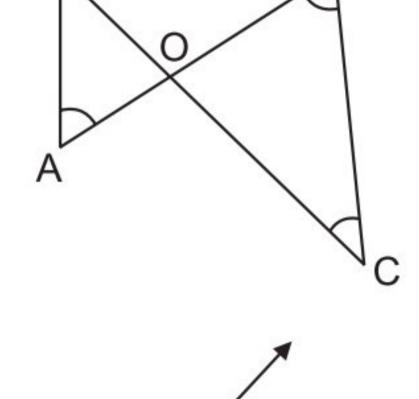

(c) PO < PR

- (d) QR < PR
- [CBSE SP 2010]
- **12.** In the given figure, $\angle B < \angle A$ and $\angle D > \angle C$, then
 - (a) AD > BC
 - (b) AD = BC
 - (c) AD < BC
 - (d) AD = 2BC
- **13.** In the given figure, if AB = 3 cm and AC = 5 cm, then CD is equal to
 - (a) 4 cm
 - (b) 2 cm
 - (c) 3 cm
 - (d) 5 cm
- 14. In the given figure, DE \parallel BC, BP and CP are bisectors of \angle B and \angle C respectively. If BD = 2 cm and CE = 3 cm, then DE is equal to
 - (a) 3 cm

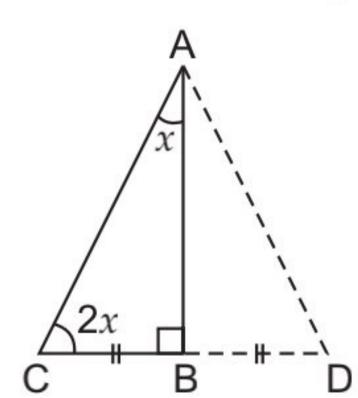
(b) 2 cm

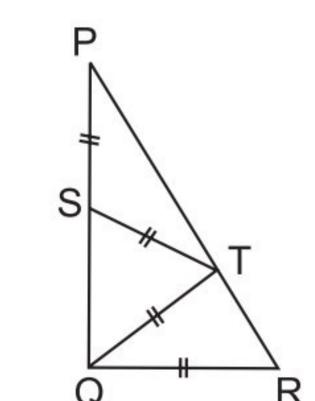
(c) 5 cm

(d) 7 cm



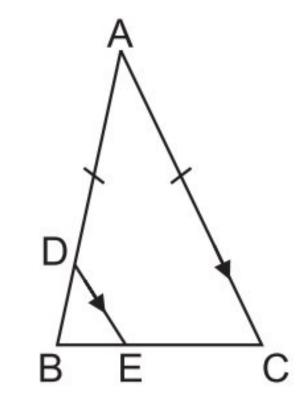
- **15.** In right $\triangle ABC$, right angled at B, $\angle ACB$ is twice $\angle CAB$ (as shown in the figure). If BC = 2 cm, then hypotenuse AC is equal to
 - (a) 3 cm


(b) 4 cm


(c) 5 cm

- (d) 6 cm
- **16.** In the given figure, if $\angle P = 25^{\circ}$, then the measure of $\angle R$ is
 - (a) 25°
 - (b) 50°
 - (c) 75°
 - (d) 60°

5 cm

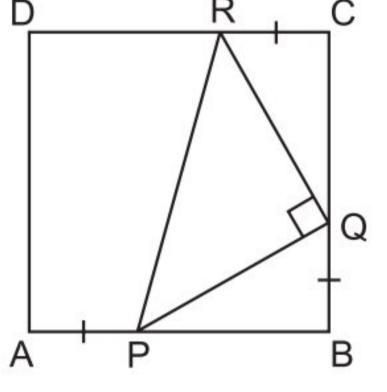


- 17. ABC is a triangle in which AB = AC. D is any point on AB. Through D, a line parallel to AC intersects BC at E. If DB = 1.5 cm, then DE is equal to
 - (a) 3 cm

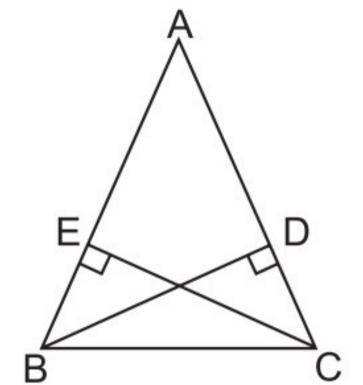
(b) 2 cm

(c) 2.5 cm

(d) 1.5 cm



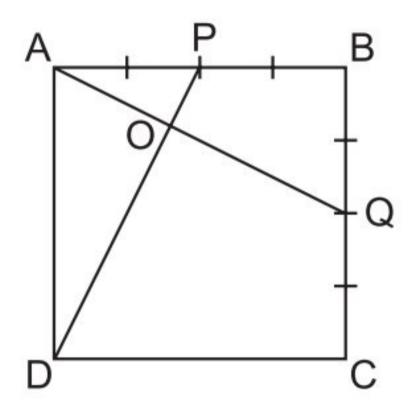
- **18.** ABCD is a square. P, Q and R are points on the sides AB, BC and CD such that AP = BQ = CR and $\angle PQR = 90^{\circ}$. Then, the measure of $\angle RPQ$ is
 - (a) 60°


(b) 30°

(c) 45°

(d) 75°

- 19. In the given figure, BD \perp AC and CE \perp AB. If BD=CE=3.5 cm and AB = 5 cm, then the measure of AC is
 - (a) 3.5 cm
 - (b) 4.5 cm
 - (c) 5 cm
 - (*d*) 5.5 cm



- **20.** ABCD is a square. P is the mid-point of AB and Q is the mid-point of BC. If PD and AQ intersect at O, then the measure of ∠POQ is
 - (a) 100°

(b) 90°

(c) 75°

(d) 60°

Chapter 8: Quadrilaterals

	MULTIPLE-CHOI	CE	QUESTIONS -			
ho	ose the correct answer from the given	fot	ar options in the	e foll	owing question	ns:
1.	Three angles of a quadrilateral are 60	°, 8	6° and 110°. The	e fou	irth angle is	
	(a) 104°	(/	124°			
	(c) 94°	<i>(d)</i>	84° [CBSE SP 2	.011]		
2.	The value of x in the given figure is				$\int_{0}^{\infty} 7x$ 5x	\
	(a) 10°	. ,	20°			
	(c) 30°	(<i>d</i>)	40° [CBSE SP 2	.010]	$\int 3x$ 3:	$x \rightarrow$
3.	In a quadrilateral, three angles are in			ıd		
	the fourth angle is 80°, then the other					
	(a) 100°, 100°, 80°		120°, 120°, 40°			
	(c) 100°, 110°, 70°		110°, 110°, 60°	ž		_
4.	In a quadrilateral ABCD, AB DC and	d Al	D = BC = 5.5 cm	, and	l one of the ang	les
	is 80°, then the other angles are	(1-)	1200 000 000			
	(a) 90°, 90°, 100°	. ,	120°, 80°, 80°			
_	(c) 80°, 100°, 100°	` ′	110°, 85°, 85°	C		
5.	The sides of a quadrilateral are extended. The sum of these exterior angles is	ena	ed in order to	form	n exterior angi	es.
	(a) 360° (b) 270°	(c)	90°	<i>(d)</i>	180°	
6	Which of the following is not true for	` '		(11)	100	
0.	(a) Opposite sides are equal.	u p	arancio granii.			
	(b) Opposite angles are equal.					
	(c) Opposite angles are always bisect	ted	by the diagonal	s.		
	(d) Diagonals bisect each other.					
7.	In a quadrilateral ABCD, if AB = BC	anc	d CD = DA, then	n qu	adrilateral ABC	CD
	is a					
	(a) trapezium (b) rhombus	(c)	kite	(d)	parallelogram	
8.	Given a quadrilateral ABCD such that		O	onal	AC and BD bise	ect
	each other at right angles, then the qu	75 20				
	(a) trapezium (b) kite		rectangle	, ,	-	
9.	P and Q are the mid-points of the s					-
	point on side BC. O is joined to A. If S respectively, then PQRS is	s an	a K are the mia	-pon	nts of Ob and C	JC
	(a) a square	(b)	a rectangle			
	(c) a rhombus		a parallelogran	n		
		,	1			

10.		and $\angle Q$ of a quadrated of $\angle R$ and $\angle S$ at C and			The same of the sa		
	(a) rectangle	(b) rhombus	(c)	para	llelogram		
	(d) quadrilateral	whose opposite ang	gles	are sı	applement	tary	
11.	ABCD is a rhomb	us in which ∠BCD	= 10	00°, tł	nen(x+y)	equals	A E
	(a) 40°		(b)	60°			x
	(c) 80°		(<i>d</i>)	70°	[CBSE SP	2011]	1000
							100°
12.	ABCD is a paralle	elogram. If $\angle A = (3x)$	c – 2	0)° ar	$A \angle C = (x + 1)^{-1}$	c + 40)°, th	nen the value
	of x is	(***		,	(, , ,	
	(a) 30	(b) 40	(c)	50		(d) 60	
13.	D and E are the	mid-points of the s	side	s AB	and AC 1	respective	ely of ΔABC
	DE is produced to	F. To prove that D				1	
	additional inform		(1-)	Λ.T.	EE		
	(a) $\angle DAE = \angle EFC$		` '	AE =		-	
	(c) $DE = EF$		` /		DE = ∠ECI		
14.	-	logram. If its diagona		-	ual, then th	ra erapiir iraniiras-assansia	e of $\angle ABC$ is
	(a) 60°	(b) 90°	()	75°		(d) 120°	
15.	0	nd BD of a parallel $OD = 4$ cm, then the	_				
	(a) 5 cm, 4 cm			0	n, 8 cm	1	
	(c) 2.5 cm, 2 cm		, ,		n, 12 cm		
16.		en two altitudes of	` '			rough the	vertex of ar
	0	e parallelogram is 60	-		0	0	
	(a) 105°, 75°, 105°				, 65°, 115°,	•	
	(c) 120°, 60°, 120°	.53	. ,	-	, 70°, 110°,		
17.		n, if $\angle A = 60^{\circ}$, then	` '	15	17		
_, ,	(a) 110°	, , , , , , , , , , , , , , , , , , , ,		140°			
	(c) 120°		` '	130°		[(CBSE SP 2011
18		ıadrilateral is 114° a	` '		-mainino l		
10.		e of each of the thre			0	ance ang	ics are equal
	(a) 82°	(b) 84°	0.00	86°	1010010	(d) 92°	
10		ım PQRS such tha	` '		12 cm R	, ,	n PO SR
1).	•	If $\angle R = 130^{\circ}$, then \angle			12 (111, 1	– 5 CI.	II, I Q UI
	(a) 130°	(b) 50°		150°		(d) 120°	
20.		ABCD, $AB = 3$ cm a	` /			` '	D are 5.8 cm
	1	ctively. If the diago			0		
	perimeter of ΔAC						
	(a) 10 cm		(b)	8.8 c	m		
	(c) 7.2 cm		` '	8 cm			
	(F 6)		. /				

28

21.	21. If an angle of a parallelogram is four-fifths of its adjacent angle, then the angles of the parallelograms are							
	(a) 70°, 110°, 70°,		(b) 80°, 100°, 80°,	100°				
	(c) 72°, 108°, 72°,		(d) 60°, 120°, 60°,					
22	Four angles of a quadrilateral are $(2x + 20)^\circ$, $(3x - 30)^\circ$, $(x + 10)^\circ$ and $(2x)^\circ$. Value							
22.		uadrilateral are (2x	$+20)^{\circ}$, $(3x-30)^{\circ}$, $(x-30)^{\circ}$	+ $10)^{\circ}$ and $(2x)^{\circ}$. Value				
	of x is	/1 \	() - 0					
	(a) 40	(b) 45	(c) 50	(d) 55				
23.	ABCD is a rectang	gle where BC = $(4x - 4x)$	-5) cm and AD = (2x + 3) cm. Then, BC is				
	(a) 11 cm		(b) 12 cm					
	(c) 10 cm		(d) 15 cm					
24.	In rhombus PORS	S_{r} PO = $3x$ cm. OR =	= 2(x + 3) cm. Each	side of the rhombus is				
	(a) 17 cm	(b) 19 cm	(c) 18 cm	(d) 28 cm				
25		` '						
25.	5. ABCD is a rhombus in which altitude from D to side AB bisects AB. Then the angles of the rhombus are							
			(1 ₀) 1100 700 1100	700				
	(a) 100°, 80°, 100°		(b) 110°, 70°, 110°,					
	(c) 120°, 60°, 120°		(d) 130°, 50°, 130°,					
26.		t of side BC of a par		such that				
	$\angle BAP = \angle DAP$. If	f AD = 10 cm, then	length of CD is					
	(a) 10 cm	(b) 5 cm	(c) 6 cm	(d) 8 cm				
27.	ABCD is a paralle	elogram. P and Q a	re respectively the	mid-points of AB and				
	CD. PQ and diagonal AC intersect at M. If AM = 3 cm, then the length of							
	diagonal AC is							
	(a) 3 cm	(b) 4.5 cm	(c) 6 cm	(d) 7.5 cm				
28.	The diagonals AG	C and BD of a para	allelogram ABCD i	ntersect each other at				
	point O. If $\angle BOA = 68^{\circ}$ and $\angle CAD = 25^{\circ}$, then $\angle DBC$ is equal to							
	(a) 40°	(b) 43°	(c) 68°	(d) 25°				
29.	In a parallelogran	n PORS, PO = 9 cm	and $PS = 5$ cm. Th	e bisector of ∠P meets				
53	9. In a parallelogram PQRS, PQ = 9 cm and PS = 5 cm. The bisector of \angle P meets SR in A. PA and QR produced meet at B. Then, the length of RB is							
	(a) 5 cm	(b) 4 cm	(c) 9 cm	(d) 6 cm				
20			00 00 0000					
30.	M is the mid-point of side CD of a parallelogram ABCD. A line through							
	C parallel to MA intersects AB at P and DA produced at R. If DA = 3.5 cm, then the length of DR is							
			(a) 7 cm	(d) 10 E am				
	(a) 3.5 cm	(b) 5 cm	(c) 7 cm	(d) 10.5 cm				
31.	1. ABCD is a trapezium in which AB \parallel DC. M and N are the mid-points of Al and BC respectively. If AB = 12 cm, MN = 14 cm, then the length of CD is							
	(a) 16 cm	(b) 14 cm	(c) 12 cm	(d) 10 cm				
32.	PORS is a paralle	elogram. A and B	are respectively th	e mid-points of sides				
	. PQRS is a parallelogram. A and B are respectively the mid-points of sides PQ and SR. AS and BQ meet the diagonal PR of length 12 cm at C and D							
	respectively. Then, the length of CD is							
	(a) 6 cm	(b) 3 cm	(c) 4 cm	(d) 5 cm				
	(11)	(0) 0 0111	(0) 1 0111					

Scanned with CamScanner

33.	The side AB of the parallelogram ABCD is produced to X and the bisector
	of ∠CBX meets DA produced and DC produced at E and F respectively. If
	DE = 10 cm, then the length of DF is

(a) 5 cm

(b) 10 cm

(c) 7.5 cm

(*d*) 15 cm

34. If the diagonals of a rhombus are 18 cm and 24 cm respectively, then its side is equal to

(a) 16 cm (b) 15 cm (c) 20 cm (d) 17 cm

35. In $\triangle ABC$, $\angle A = 30^{\circ}$, $\angle B = 40^{\circ}$ and $\angle C = 110^{\circ}$. Then, the angles of the triangle formed by joining the mid-point of the sides of this triangle are

(a) 70° , 70° , 40°

(b) 60°, 40°, 80°

(c) 30° , 40° , 110°

(d) 60°, 70°, 50°

Chapter 9: Areas of Parallelograms and Triangles

MULTIPLE-CHOICE QUESTIONS		MULTIPL	E-CHOICE	QUESTIONS	§ -
---------------------------	--	---------	----------	-----------	----------------

Choose the correct answer from the given four options in the following questions:

- 1. The median of a triangle divides it into two
 - (a) equilateral triangles
- (b) isosceles triangles

(c) right triangles

(d) triangles of equal areas

[CBSE SP 2012]

- 2. ABCD is a quadrilateral whose diagonal AC divides it into two parts, equal in area, then ABCD
 - (a) is a rhombus

(b) is a parallelogram

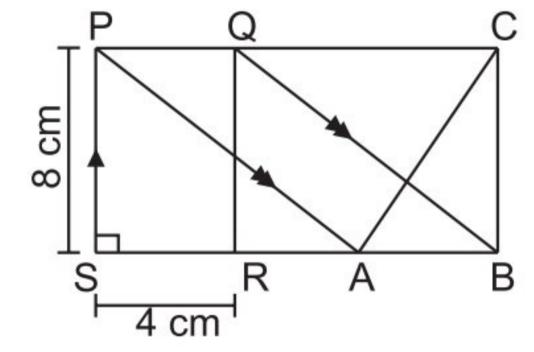
(c) is a rectangle

- (*d*) need not be any of (*a*), (*b*) or (*c*)
- 3. Two parallelograms are on equal base and between the same parallels. The ratio of their areas is
 - (a) 1:2

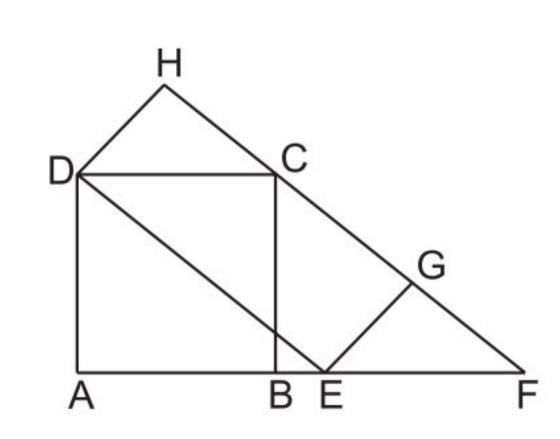
(b) 2:1

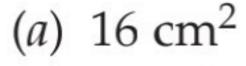
(c) 1:1

- (d) 3:1
- **4.** The mid-point of the sides of a triangle along with any of the vertices as the fourth point make a parallelogram of area equal to
 - (a) $ar(\Delta ABC)$


(b) $\frac{1}{2}$ ar($\triangle ABC$)

(c) $\frac{1}{3}$ ar($\triangle ABC$)


- (d) $\frac{1}{4}$ ar($\triangle ABC$)
- 5. In the given figure, PQRS is a rectangle. If PS = 8 cm and SR = 4 cm, then the area of \triangle ABC is


- (b) 12 cm^2
- (c) 20 cm^2
- (d) 16 cm^2

- **6.** ABCD is a square. DEGH is a rectangle. Two equal parallelograms on the base DE are
 - (a) DCFE and DCBA
 - (b) DEGC and DEFH
 - (c) ABCD and HDEG
 - (d) DEGH and DEFC

- 7. In the given figure, the area of quadrilateral ABCD is
 - (a) 24 cm^2
 - (b) 13 cm^2
 - (c) 21 cm^2
 - $(d) 42 \text{ cm}^2$
- 8. In the given figure, if AD || BC, then the triangle which is equal in area to $\triangle COD$ is
 - (a) $\triangle ADC$
 - (b) $\triangle BOA$
 - ΔAOD
 - (d) $\triangle COB$
- 9. ABCD is a parallelogram. If AB = 12 cm, AE = 7.5 cm, CF = 15 cm, then AD is equal to
 - (a) 6 cm
 - (*b*) 3 cm
 - (c) 10.5 cm
 - (*d*) 8 cm
- 10. ABCD is a parallelogram and E and F are mid-points of AD and BC respectively. P is any point on EF. If area of $\Delta EFC = 8 \text{ cm}^2$, then $ar(\Delta AEP + \Delta BFP)$ is

(b) 8 cm^2

(c) 4 cm^2

(d) 12 cm^2

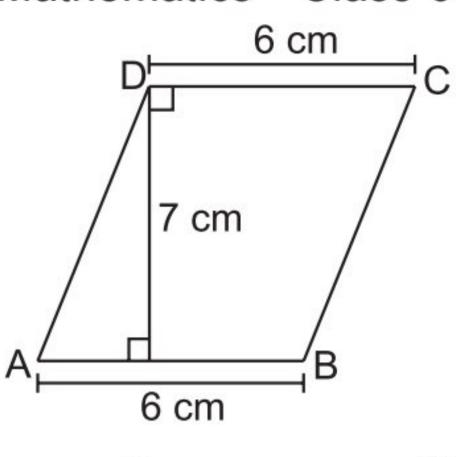
11. PQRS is a parallelogram and A and B are any points on PQ and QR respectively. If $ar(\|gm PQRS) = 48 \text{ cm}^2$, then $ar(\Delta PBS) + ar(\Delta ASR)$ is equal to

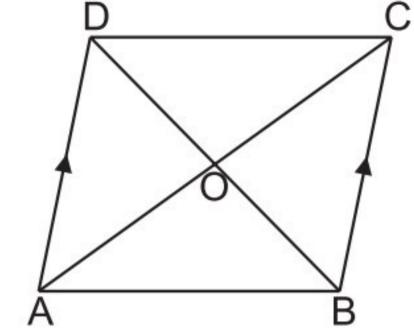
(b) 96 cm^2

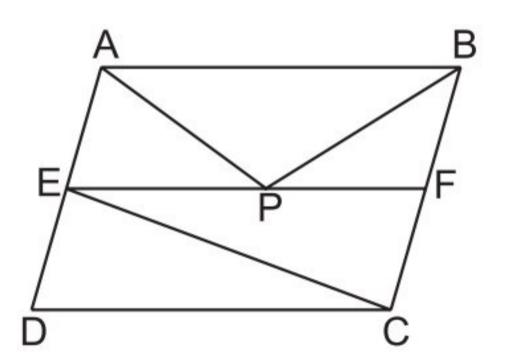
(c) 36 cm^2

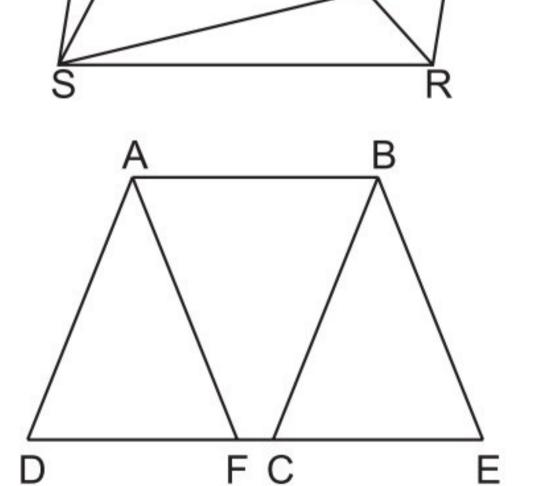
(d) 48 cm^2

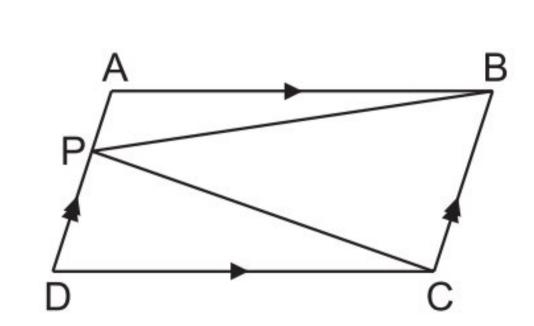
12. In the given figure, if $ar(\|gm ABCD) = 29 cm^2$ and AB = 5.8 cm, then the height of $\parallel gm \ ABEF$ is

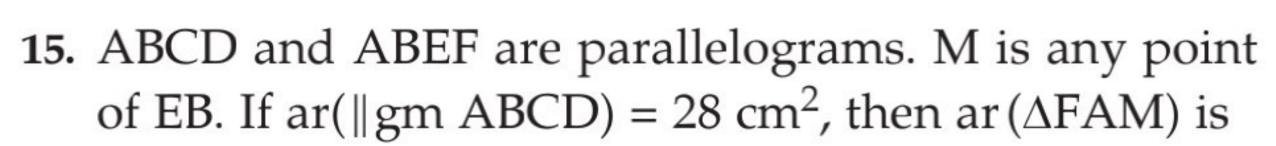

- (*b*) 6 cm
- (c) 5 cm
- (d) 5.8 cm
- 13. In the given figure, ABCD is a parallelogram. If $ar(\Delta BAP) = 10 \text{ cm}^2 \text{ and } ar(\Delta CPD) = 30 \text{ cm}^2, \text{ then}$ ar(||gm ABCD) is



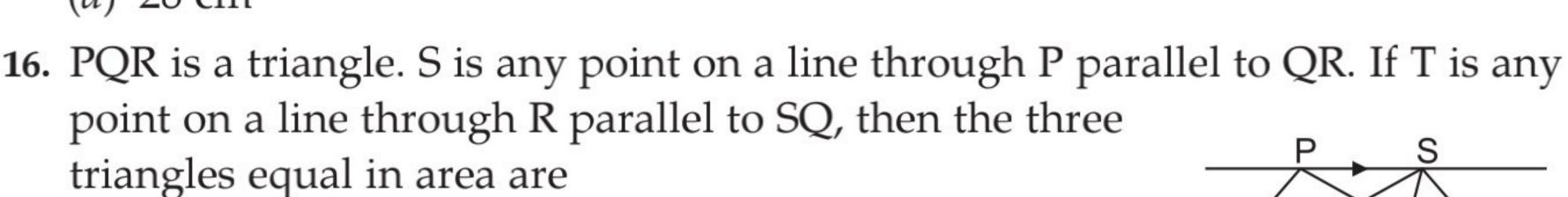

(b) 80 cm^2


(c) 60 cm^2


(d) 100 cm^2

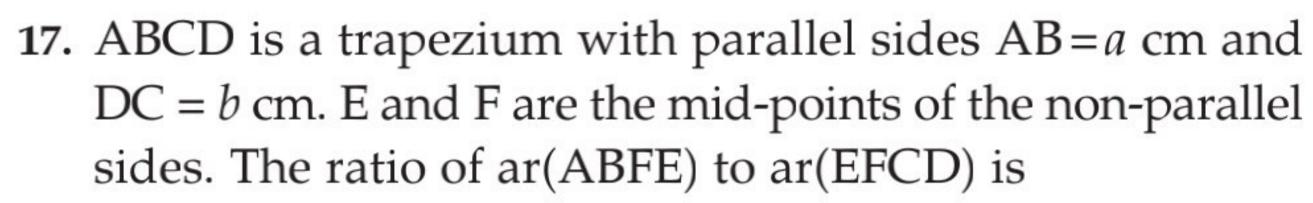


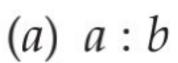
Ε


Ε

- **14.** ABCD is a square. P and Q are mid-points of AB and DC respectively. If AB = 8 cm, then $ar(\Delta BPD)$ is
 - (a) 16 cm^2
 - (b) 18 cm^2
 - (c) 24 cm^2
 - (d) 32 cm^2

- (b) 14 cm^2
- (c) 21 cm^2
- (d) 28 cm^2

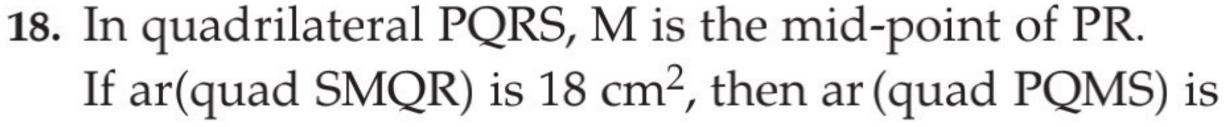




(b)
$$\Delta PQR$$
, ΔQSR , ΔQRT

(c)
$$\Delta QRT$$
, ΔSRT , ΔQSR

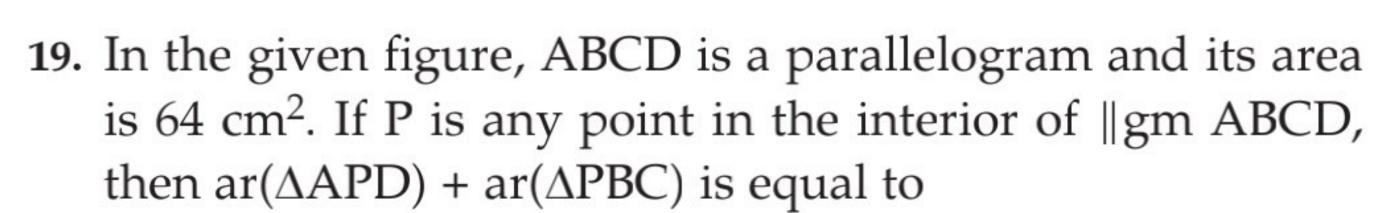
(d)
$$\Delta QSR$$
, ΔTSR , ΔPQR



(b)
$$(a + 3b) : (3a + b)$$

(c)
$$(3a + b) : (a + 3b)$$

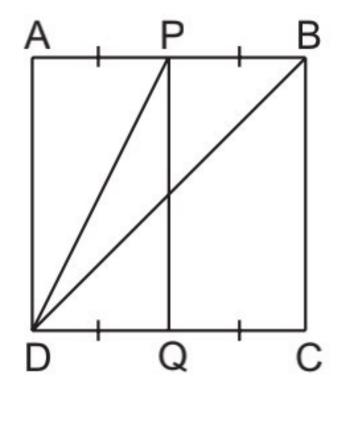
$$(d) (2a + b) : (3a + b)$$

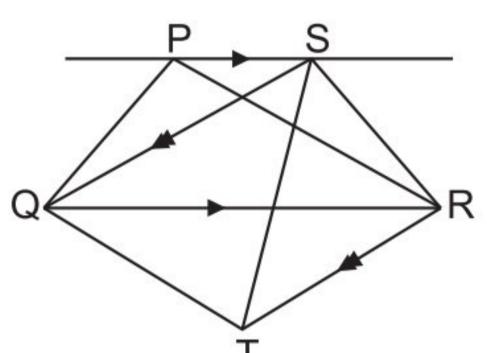


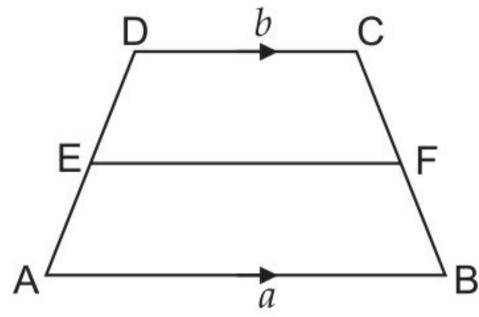
(b)
$$18 \text{ cm}^2$$

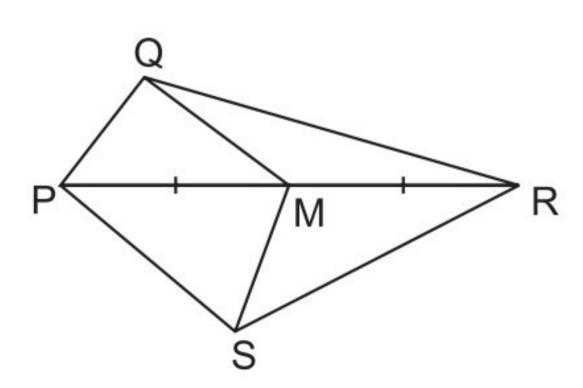
(c)
$$12 \text{ cm}^2$$

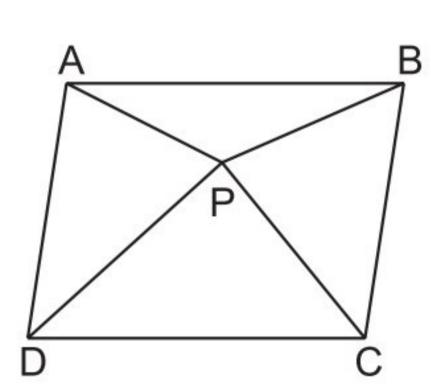
(d)
$$36 \text{ cm}^2$$




(b)
$$48 \text{ cm}^2$$


(c)
$$32 \text{ cm}^2$$

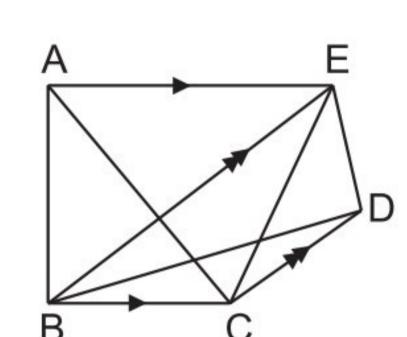

(*d*)
$$16 \text{ cm}^2$$



D

- 20. PQRS is a trapezium with PQ | SR. A line parallel to PR intersects PQ at X and QR at Y. If $ar(\Delta PYR) = 5 \text{ cm}^2$, then $ar(\Delta PXS)$ is
 - (a) 10 cm^2
 - (b) 5 cm^2
 - (c) 2.5 cm^2
 - (d) 7.5 cm^2
- 21. D and E are mid-points of BC and AD respectively. If $ar(\Delta ABC) = 10 \text{ cm}^2$, then $ar(\Delta EBC)$ is
 - (a) 2.5 cm^2

(b) 10 cm^2

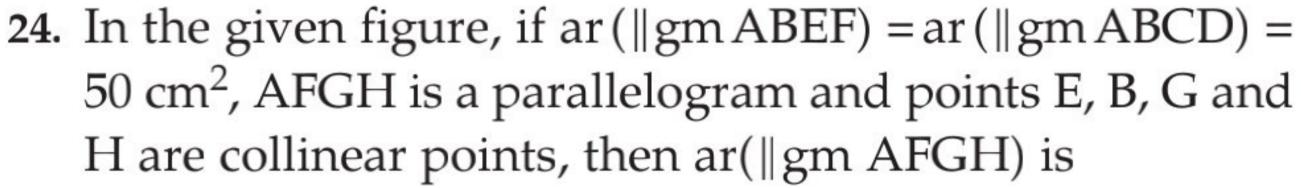

(c) 5 cm^2

- (d) 7.5 cm^2
- 22. Points A, B, C and D are collinear. AB = BC = CD. XY || AD. If P and M lie on XY and $ar(\Delta MCD) = 7 \text{ cm}^2$, then $ar(\Delta APB)$ and $ar(\Delta APD)$ respectively are
 - (a) 7 cm^2 , 21 cm^2

(b) 7 cm^2 , 14 cm^2

(c) 14 cm^2 , 21 cm^2

(d) 14 cm^2 , 14 cm^2

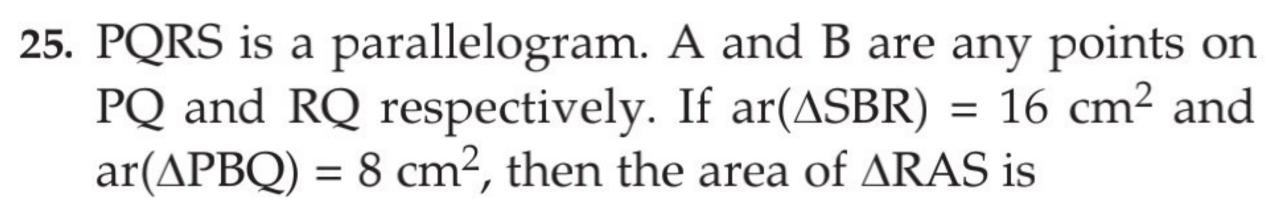


- 23. In the given figure, if BC || AE, CD || BE, and $ar(\Delta BED) = 6 \text{ cm}^2$, then $ar(\Delta ABC)$ is
 - (a) 6 cm^2

(b) 8 cm^2

(c) 10 cm^2

(d) 12 cm^2

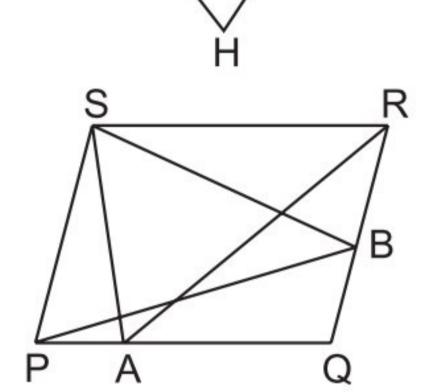


(a) 25 cm^2

(b) 50 cm^2

(c) 100 cm^2

(d) 75 cm^2

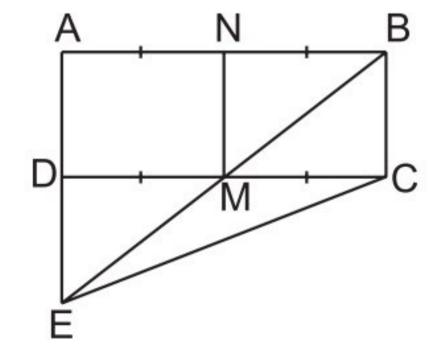


(a) 8 cm^2

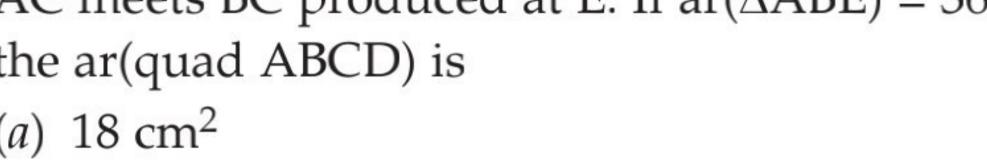
(b) 16 cm^2

(c) 24 cm^2

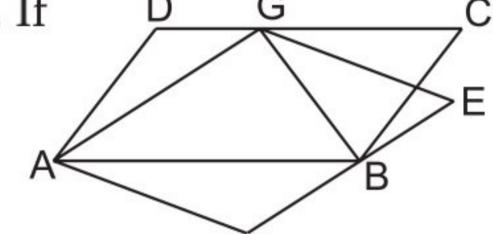
(d) 32 cm^2

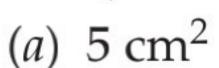


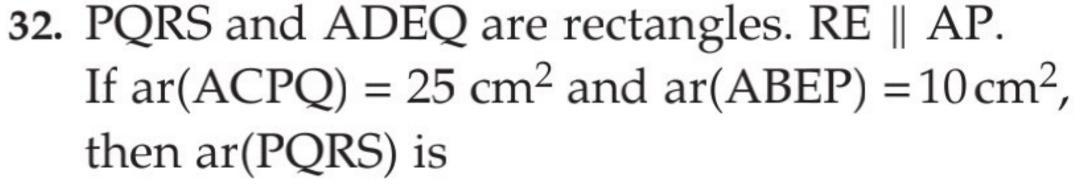
- 26. ABCD is a parallelogram. P is any point on CD. If $ar(\Delta DPA) = 15 \text{ cm}^2$ and ar (\triangle APC) = 20 cm², then ar(\triangle APB) is


 - (a) 15 cm^2 (b) 20 cm^2 (c) 35 cm^2 (d) 30 cm^2

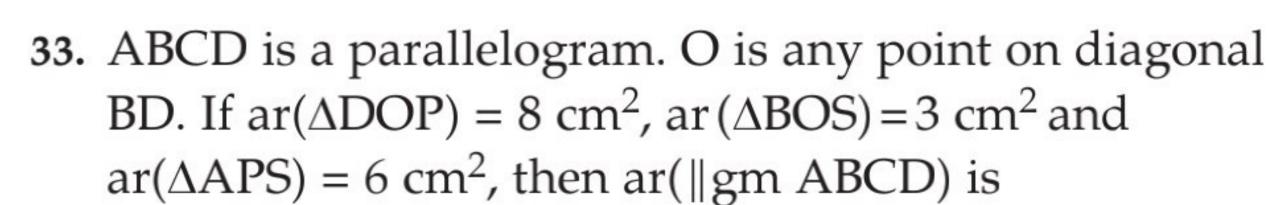
27. M and N are the mid-points of sides DC and AB respectively, of a rectangle ABCD. If ar(rectangle ABCD) = 48 cm², then ar(Δ EMC) is


- (a) 36 cm^2
- (b) 48 cm^2
- (c) 24 cm^2
- (d) 12 cm^2

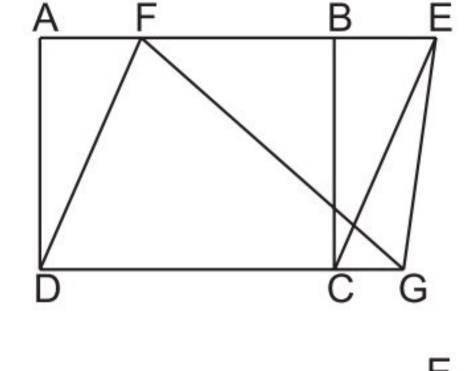

- 28. ABCD is a rectangle in which AB = 8 units and AD = 3 units. If DCEF is a parallelogram, then the area of Δ EFG in sq units is
 - (a) 16
 - (b) 6
 - (c) 24
 - (d) 12
- 29. ABCD is a quadrilateral. A line through D, parallel to AC meets BC produced at E. If $ar(\Delta ABE) = 36 \text{ cm}^2$, then the ar(quad ABCD) is

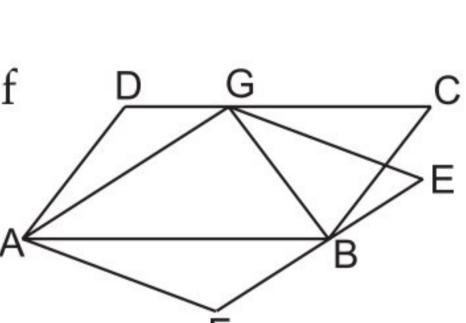

- (a) 18 cm^2
- (b) 36 cm^2
- (c) 72 cm^2
- (*d*) 9 cm^2
- 30. In the given figure, ABCD and AGEF are parallelograms. If $ar(\|gm AGEF) = 27 \text{ cm}^2$, then $ar(\Delta ADG) + ar(\Delta GCB)$ is

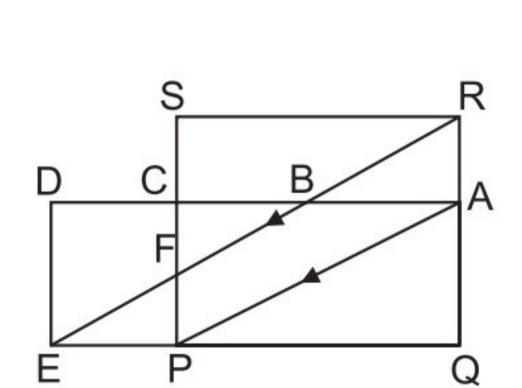
- (a) 13.5 cm^2
- (b) 27 cm^2
- (c) 9 cm^2
- (d) 18 cm^2
- **31.** ABCD is a trapezium in which AB || DC. A line through A parallel to BC meets diagonal BD at P. If $ar(\Delta BPC) = 5 \text{ cm}^2$, then $ar(\Delta ABD)$ is

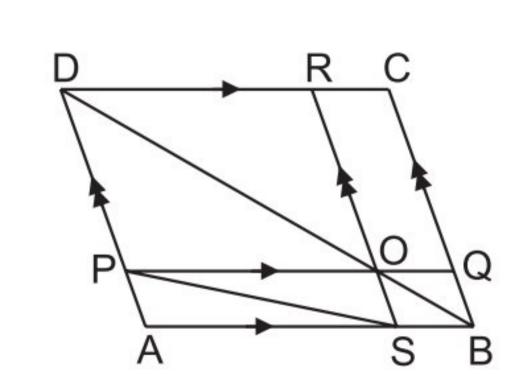


- (b) 2.5 cm^2
- (c) 7.5 cm^2
- (d) 10 cm^2

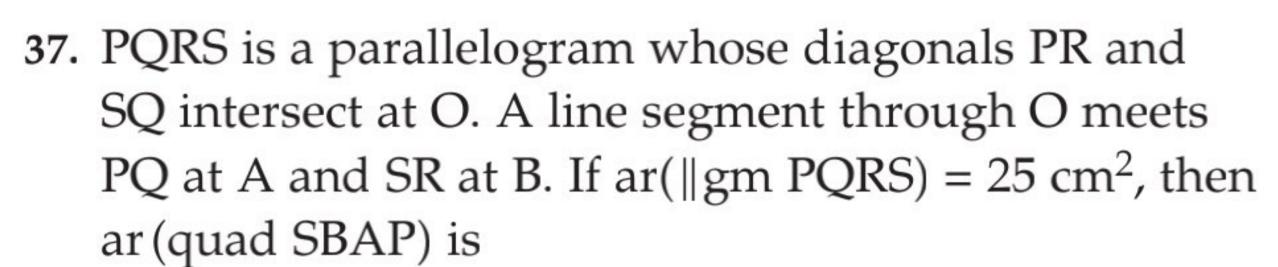



- (b) 10 cm^2
- (c) 35 cm^2
- (d) 30 cm^2





- (b) 45 cm^2
- (c) 46 cm^2
- (d) 34 cm^2

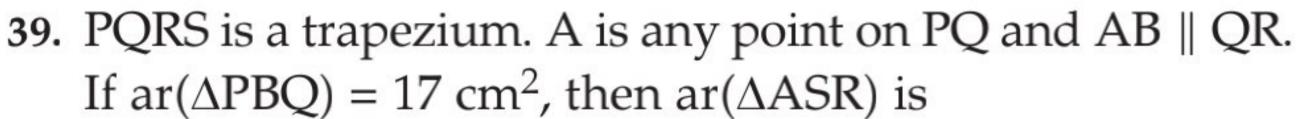


- **34.** In the given figure, ABCD is a rectangle and EFGH is a trapezium DE = CH. If $ar(rect ABCD) = 26 cm^2$, then ar(trap EFGH) is
 - (a) 52 cm^2
 - (b) 26 cm^2
 - (c) 39 cm^2
 - (d) 34 cm^2
- 35. ABCD, ABEF and AGHF are parallelograms. If $ar(\|gm ABCD) = 23 \text{ cm}^2$, then $ar(\Delta FGH)$ is
 - (a) 12 cm^2
 - (b) 12.5 cm^2
 - (c) 11.5 cm^2
 - (d) 23 cm^2
- **36.** ABCD is a parallelogram in which DC is produced to P such that DC = CP. AP intersects BC at Q. If $ar(\Delta BQD) = 3 \text{ cm}^2$, then $ar(\|gm ABCD)$ is
 - (a) 9 cm^2

(b) 12 cm^2

(c) 15 cm^2

(d) 6 cm^2

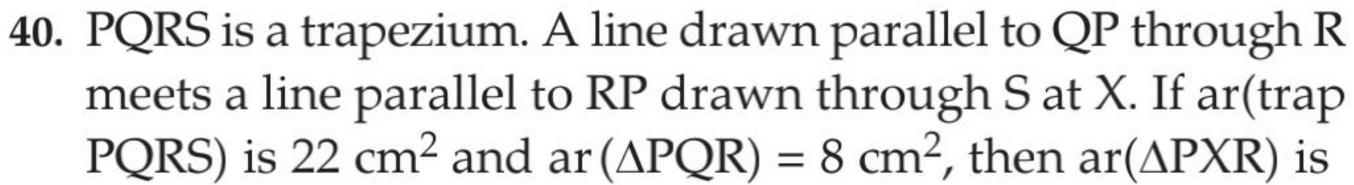


- 38. ABCD and ABFE are parallelograms as shown in the figure. If $ar(\|gm ABCD) = 24 \text{ cm}^2 \text{ and } ar(\|gm ABFE) =$ 18 cm², then ar(quad EFCD) is
 - (a) 33 cm^2

(b) 42 cm^2

(c) 30 cm^2

(d) 36 cm^2

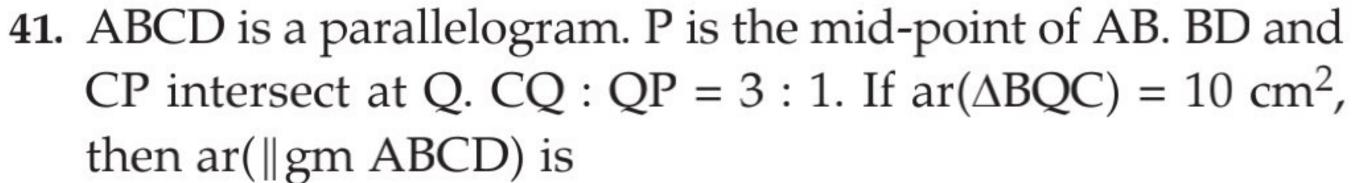


(a) 17 cm^2

(b) 8.5 cm^2

(c) 10 cm^2

(d) 18.5 cm^2

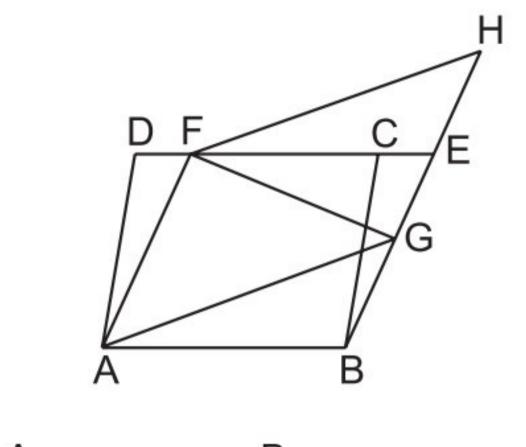


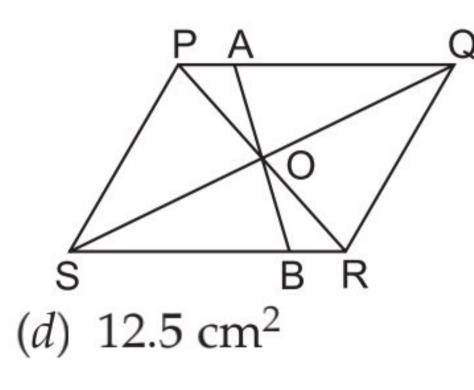
(a) 15 cm^2

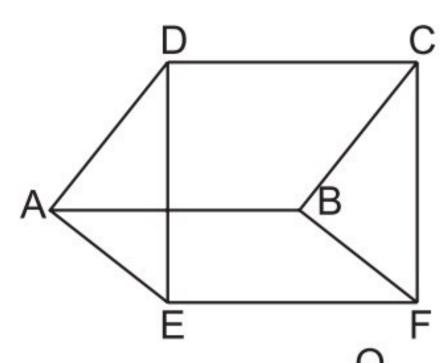
(b) 30 cm^2

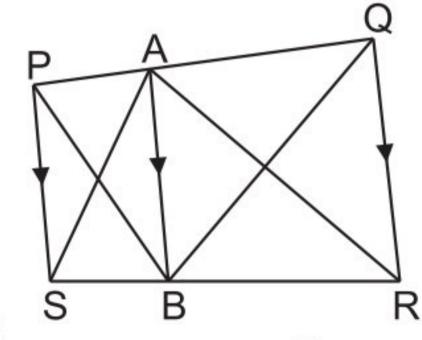
(c) 14 cm^2

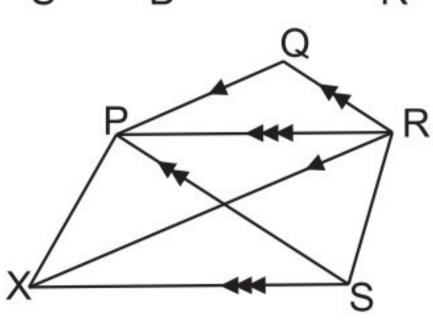
(d) 8 cm^2

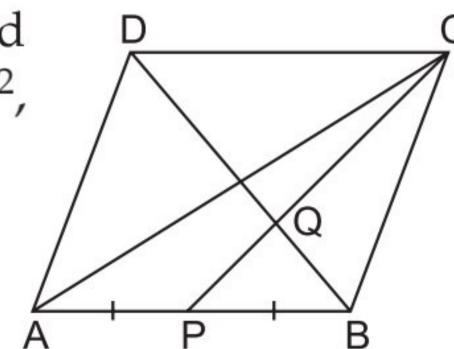


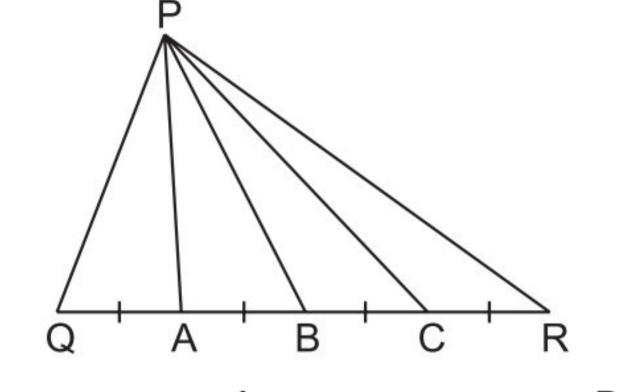

(a) 130 cm^2


(b) 160 cm^2


(c) 120 cm^2


(d) 90 cm^2



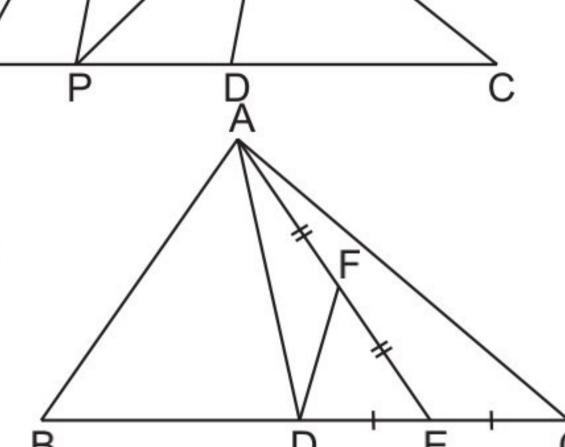


- **42.** In the given figure, QA = AB = BC = CR. If $ar(\Delta PQR) = 24 \text{ cm}^2$, then $ar(\Delta PAR)$ is
 - (a) 18 cm^2
 - (b) 12 cm^2
 - (c) 20 cm^2
 - (*d*) 16 cm^2

- 43. ABCD is a parallelogram. M is any point on AD. P is the mid-point of BM. If the area of parallelogram ABCD = 28 cm^2 , then the area of Δ MPC is
 - (a) 14 cm^2

(b) 12 cm^2

(c) 7 cm^2


- (d) 16 cm^2
- **44.** P is any point on the base BC of \triangle ABC. D is the mid-point of BC. DE is drawn parallel to PA. If ar $(\triangle$ ABC) = 12 cm², then ar $(\triangle$ EPC) is
 - (a) 4 cm^2

(b) 8 cm^2

(c) 9 cm^2

 $(d) 6 cm^2$

[Hint: Join AD]

- **45.** ABC is a triangle in which D is the mid-point of BC. E and F are mid-points of DC and AE respectively. If $ar(\Delta ABC) = 16 \text{ cm}^2$, then $ar(\Delta DEF)$ is
 - (a) 2 cm^2

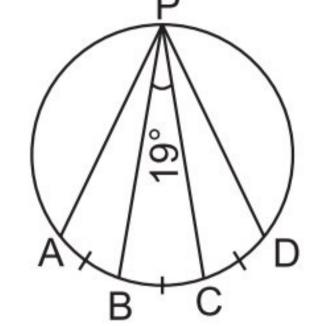
(b) 1 cm^2

(c) 4 cm²

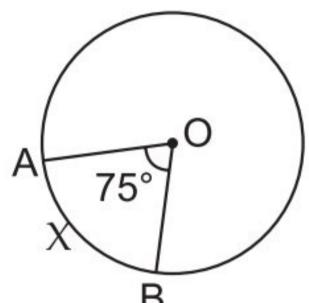
(*d*) 8 cm^2

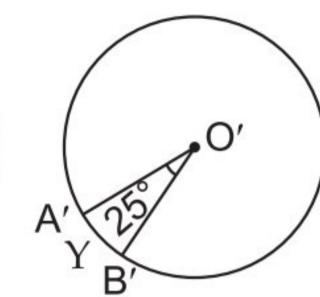
Chapter 10: Circles

 MULTIPLE-CHOICE	QUESTIONS
MOLIN EL ONOISE	QUEUTION


Choose the correct answer from the given four options in the following questions:

- 1. In the given figure, $\angle BPC = 19^{\circ}$, arc AB = arc BC = arc CD. Then, the measure of $\angle APD$ is
 - (a) 38°


(b) 59°


(c) 57°

(d) 76°

2. The given figures show two congruent circles with centre O and O'. Arc AXB subtends an angle of 75° at the centre and arc A'YB' subtends an angle of 25° at the centre O'. Then, the ratio of arcs AXB to A'YB' is

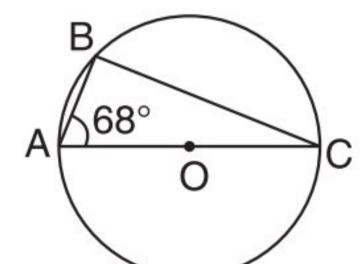
(a) 3:1

(b) 1:3

(c) 2:1

- (d) 1:2
- 3. Greatest chord of a circle is called its
 - (a) radius

(b) diameter


(c) chord

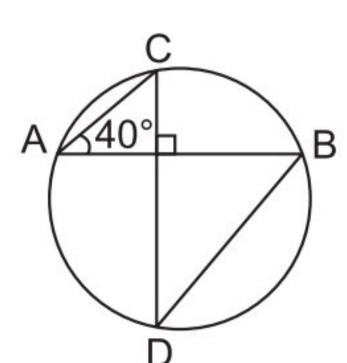
- (d) secant
- 4. Angle formed in minor segment of a circle is
 - (a) an acute angle

(b) an obtuse angle

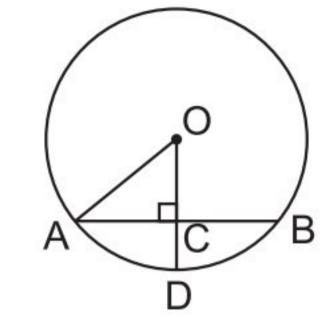
(c) a right angle

- (d) a straight angle
- 5. Number of circles that can be drawn through three non-collinear points is
 - (a) 1
- (b) 0
- (c) 2
- (d) 3
- 6. In the given figure, O is the centre of the circle. \angle BAO = 68°. AC is a diameter of the circle. The measure of \angle BCO is

- (a) 22°
- (b) 33°
- (c) 44°
- (d) 68°


[CBSE SP 2012]

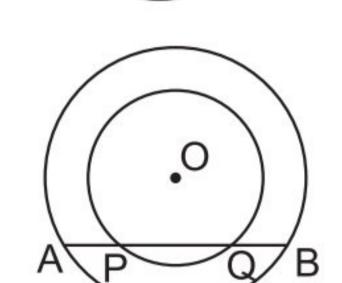
- 7. AB is a chord of a circle with radius 'r'. If P is any point on the circle such that \angle APB is a right angle, then AB is equal to
 - (a) r
- (b) 2r
- (c) 3r
- $(d) r^2$
- 8. Chords AB and CD intersect at right angles. If \angle BAC = 40°, then \angle ABD is equal to
 - (a) 45°


(b) 60°

(c) 50°

(d) 40°

- 9. In the given figure, if OA = 5 cm, AB = 8 cm and OD is perpendicular to AB, then CD is equal to



- (a) 2 cm
- (*b*) 3 cm
- (c) 4 cm
- (*d*) 5 cm
- **10.** If ABCD is a cyclic trapezium in which AD || BC and $\angle B = 60^{\circ}$, then $\angle BCD$ is equal to
 - (a) 120°

(b) 100°

(c) 80°

(d) 60°

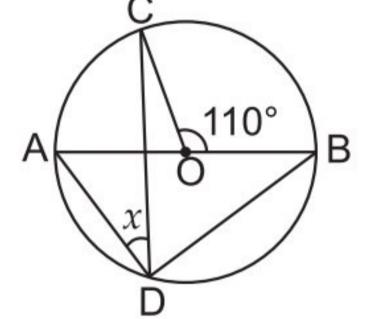
60°

- 11. If a straight line APQB is drawn to cut two concentric circles, then
 - (a) AP > BQ

(b) AP = BQ

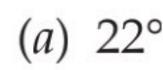
(c) AP < BQ

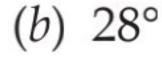
- (d) AQ > PB
- 12. If AB = 12 cm, BC = 16 cm and AB is perpendicular to BC, then the radius of the circle passing through the points A, B and C is
 - (a) 8 cm

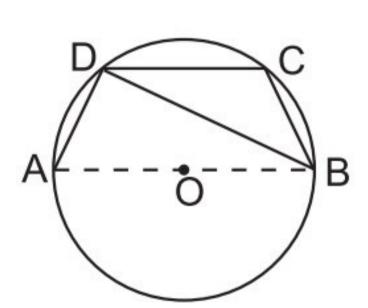

(b) 6 cm

(c) 12 cm

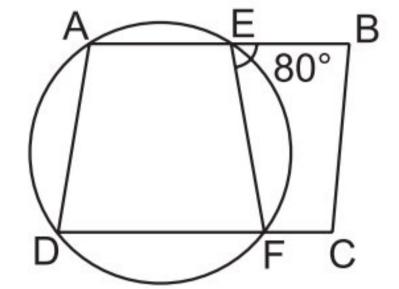
- (*d*) 10 cm
- **13.** The value of x in the given figure is




- (b) 45°
- (c) 25°
- (d) 30°

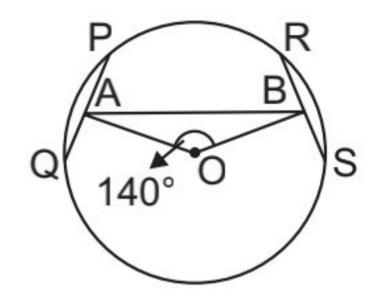

- **14.** In the given figure, if $\angle BAC = 25^{\circ}$, then $\angle BOC$ is equal to
 - (a) 25°
 - (b) 50°
 - (c) 60°
 - (*d*) 125°

- **15.** In the given figure, if $\angle ADC = 118^{\circ}$, then the measure of ∠BDC is



- (c) 32°
- (d) 38°

16. ABCD is a parallelogram. A circle passes through A and D and cuts AB at E and DC at F. If \angle BEF = 80°, then \angle ABC is equal to


- (a) 75°
- (b) 120°
- (c) 100°
- (d) 80°

- 17. If a chord of a circle is equal to its radius, then the angle subtended by this chord in major segment is
 - (a) 90°

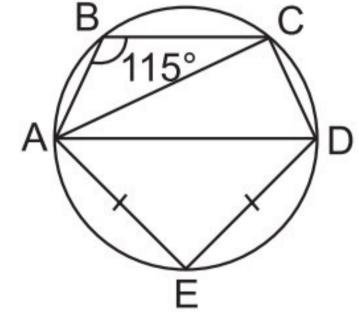
(b) 60°

(c) 45°

- (d) 30°
- 18. In the given figure, PQ and RS are two equal chords of a circle with centre O. OA and OB are perpendiculars on chords PQ and RS, respectively. If $\angle AOB = 140^{\circ}$, then $\angle PAB$ is equal to

(a) 50°

(b) 70°

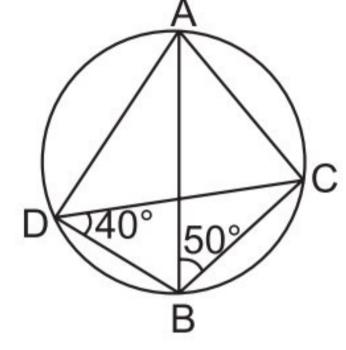

(c) 60°

- (d) 40°
- 19. In the given figure, AD is the diameter of the circle and AE = DE. If $\angle ABC = 115^{\circ}$, then the measure of $\angle CAE$ is
 - (a) 60°

(b) 80°

(c) 70°

(d) 90°

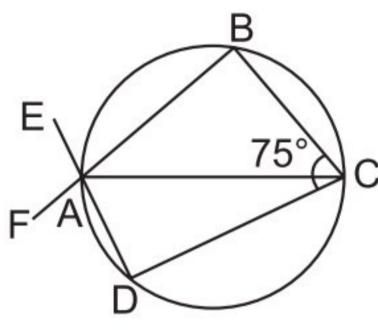


- **20.** In the given figure, if $\angle ABC = 50^{\circ}$ and $\angle BDC = 40^{\circ}$, then $\angle BCA$ is equal to
 - (a) 100°

(b) 40°

(c) 90°

(d) 50°

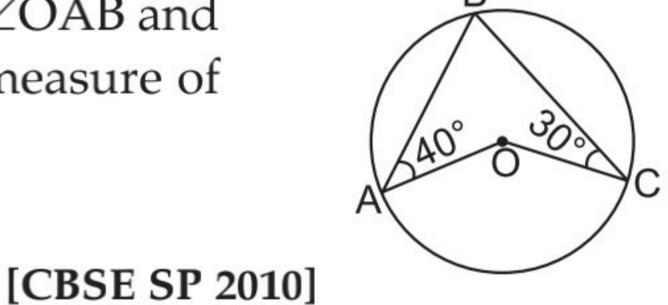


- **21.** In the given figure, AC is a diameter of the given circle and $\angle BCD = 75^{\circ}$. Then, $\angle EAF \angle ABC$ is equal to
 - (a) 10°

(b) 15°

(c) 20°

(d) 25°

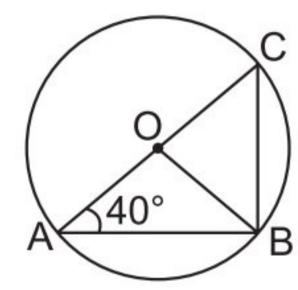


- **22.** In the given figure, O is the centre of the circle. ∠OAB and ∠OCB are 40° and 30° respectively. Then, the measure of ∠AOC is
 - (a) 120°

(b) 140°

(c) 170°

(d) 110°

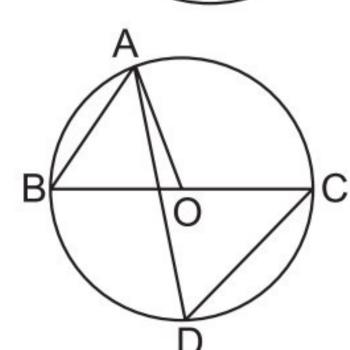


- 23. If $\angle OAB = 40^{\circ}$, then the measure of $\angle ACB$ is
 - (a) 40°

(b) 80°

(c) 50°

(d) 20°

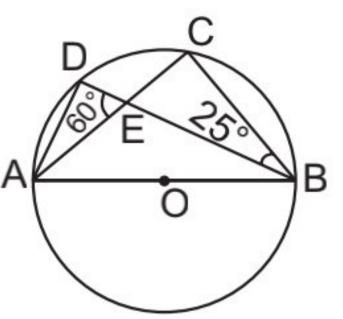


- **24.** BC is a diameter of the circle and \angle BAO = 60°. Then \angle ADC is equal to
 - (a) 60°

(b) 45°

(c) 30°

(d) 90°

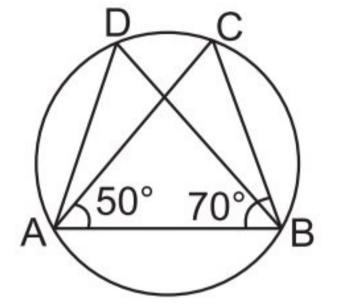


- **25.** In the given figure, O is the centre of the circle and \angle CBE = 25° and \angle DEA = 60°. The measure of \angle ADB is
 - (a) 90°

(b) 85°

(c) 95°

(d) 120° [CBSE SP 2010]

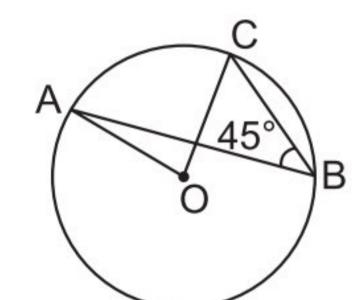


- **26.** In the given figure, if $\angle CAB = 50^{\circ}$ and $\angle CBA = 70^{\circ}$, then $\angle ADB$ is equal to
 - (a) 80°

(b) 60°

(c) 50°

(d) 70°

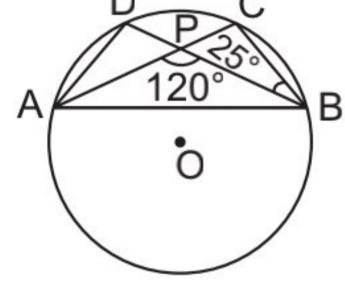


- **27.** ABCD is a cyclic quadrilateral such that AB is a diameter of the circle circumscribing it and \angle ADC = 140°, then \angle BAC is equal to
 - (a) 30°

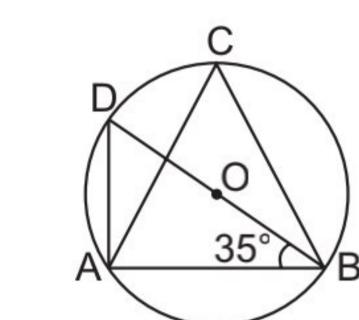
(b) 50°

(c) 40°

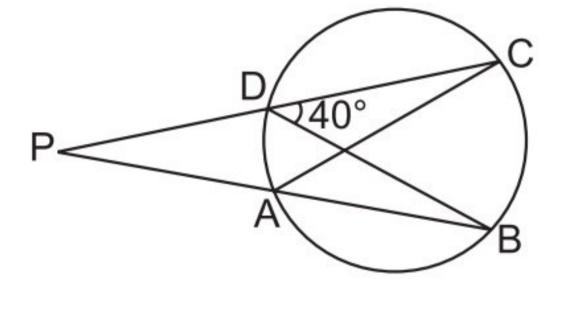
- (d) 60°
- **28.** In the given figure, $\angle ABC = 45^{\circ}$, then the measure of $\angle AOC$ is

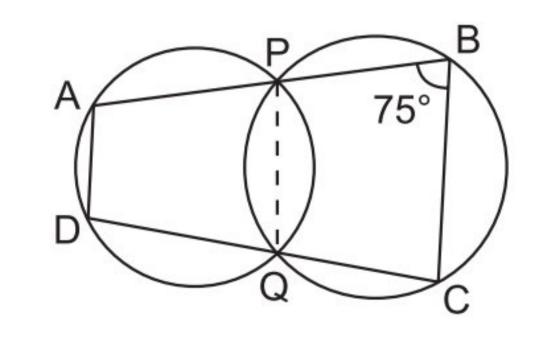


- (a) 45°
- (b) 90°
- (c) 60°
- (d) 75°
- **29.** O is the centre of the given circle. If $\angle APB = 120^{\circ}$ and $\angle DBC = 25^{\circ}$, then the measure of $\angle ADB$ is equal to
 - (a) 120°


(b) 60°

(c) 100°


(d) 95°


- **30.** In the given figure, O is the centre of the circle. If $\angle DBA = 35^{\circ}$, then the measure of $\angle ACB$ is equal to
 - (a) 35°
 - (b) 45°
 - (c) 55°
 - (d) 65°

- **31.** In the given figure, if $\angle CDB = 40^{\circ}$, then the measure of $\angle PAC$ is
 - (a) 160°
 - (b) 120°
 - (c) 100°
 - (d) 140°

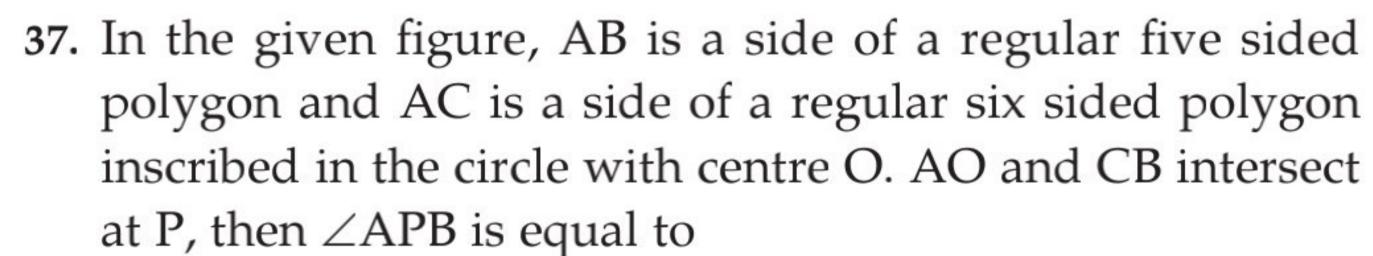
- **32.** The given figure shows two intersecting circles. If $\angle ABC = 75^{\circ}$, then the measure of $\angle PAD$ is
 - (a) 125°
 - (b) 150°
 - (c) 75°
 - (d) 105°

- 33. In the given figure, chords AB and CD intersect at P. If $\angle DPB = 88^{\circ}$ and $\angle DAP = 46^{\circ}$, then the measure of $\angle ABC$ is
 - (a) 48°
 - (b) 42°
 - (c) 46°
 - (d) 44°
- **34.** In the given figure, O is the centre of the circle. ABE is a straight line. If $\angle DBE = 95^{\circ}$, then $\angle AOD$ is equal to
 - (a) 170°
 - (b) 190°
 - (c) 180°
 - $(d) 175^{\circ}$
- 35. AOB is the diameter of the circle. If \angle AOE = 150°, then the measure of \angle CBE is

(b) 120°

(c) 125°

(d) 115°

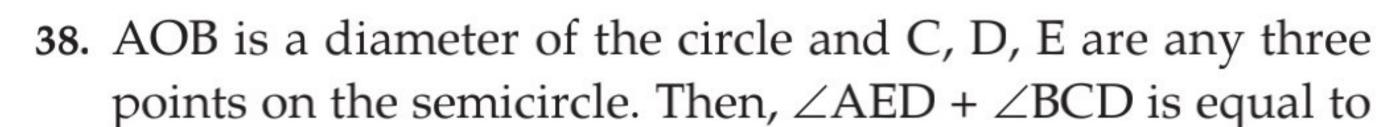


(a) a segment

(b) a semicircle

(c) a quarter circle

(d) a sector

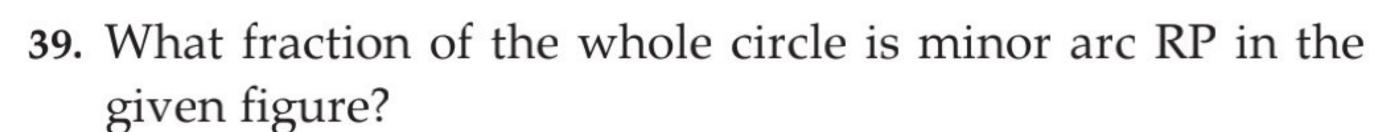


(a) 100°

(b) 72°

(c) 96°

(d) 90°

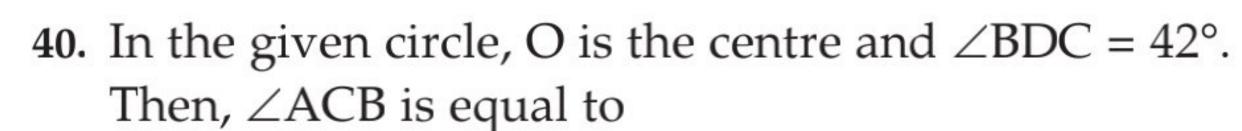


(a) 25°

(b) 260°

(c) 270°

(d) 280°

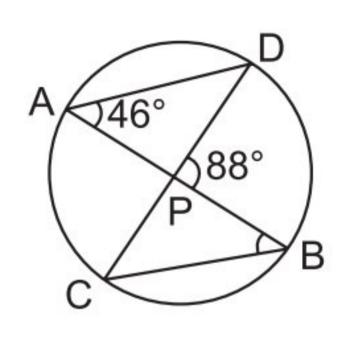


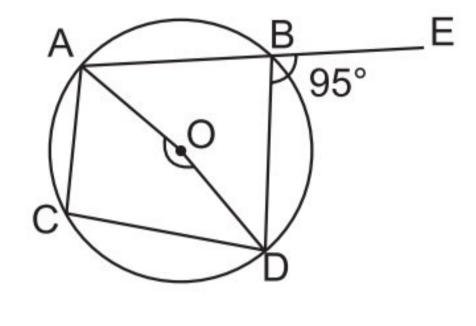
(a) $\frac{1}{2}$ of the circle

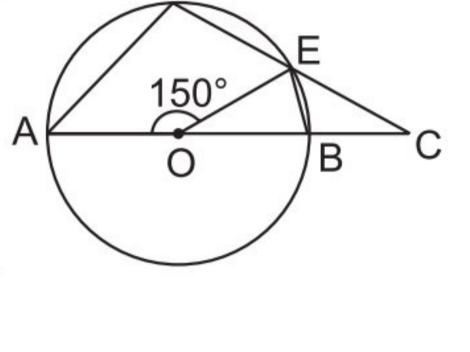
(b) $\frac{1}{4}$ of the circle

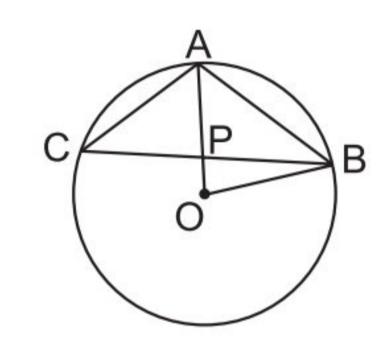
(c) $\frac{1}{3}$ of the circle

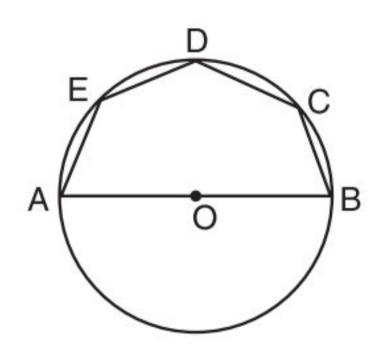
(*d*) $\frac{1}{5}$ of the circle

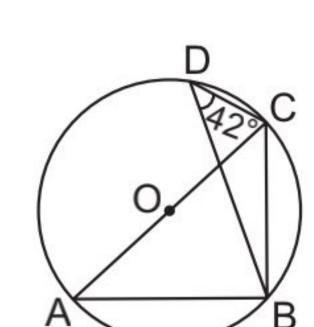


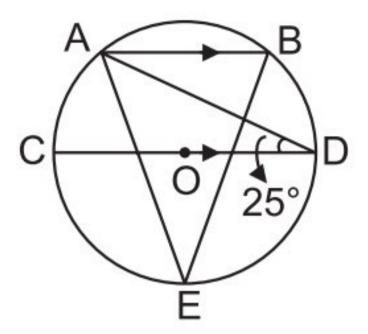

(a) 42°


(b) 48°


(c) 58°


(*d*) 52°



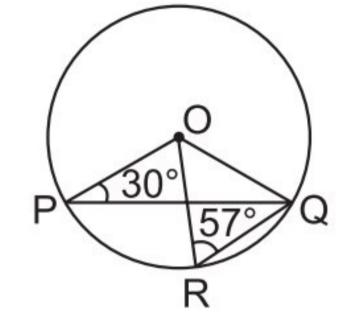


- **41.** In the given figure, AB \parallel CD and O is the centre of the circle. If \angle ADC = 25°, then the measure of \angle AEB is
 - (a) 80°

(b) 50°

(c) 25°

(d) 40°

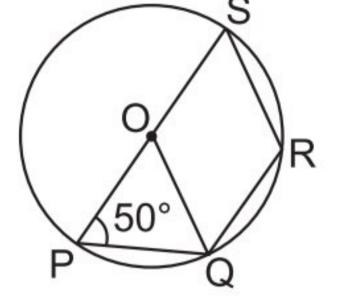


- **42.** In the given figure, $\angle OPQ = 30^{\circ}$ and $\angle ORQ = 57^{\circ}$. Then, the measure of $\angle POR$ is
 - (a) 33°

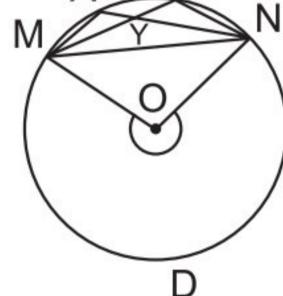
(b) 57°

(c) 66°

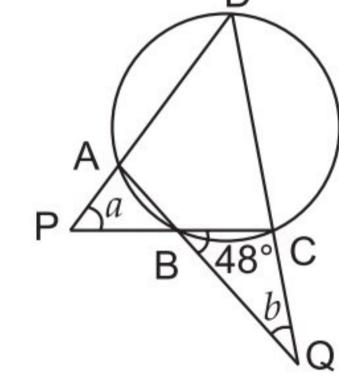
(d) 54°



- **43.** In the given figure, O is the centre of the circle and $\angle SPQ = 50^{\circ}$. Then, the measure of $\angle SRQ$ is
 - (a) 100°

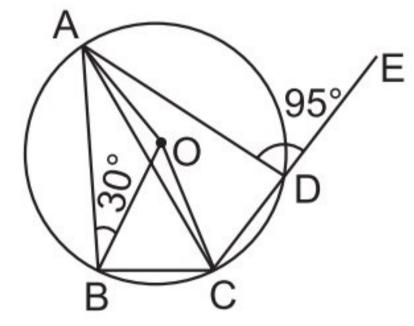

(b) 130°

(c) 120°


(d) 110°

- **44.** In the given figure, M, A, B and N are points on a circle having centre O. AN and MB cut at Y. If \angle NYB = 50° and \angle YNB = 20°, then reflex \angle MON is equal to
 - (a) 200°
- (b) 220°
- (c) 240°
- (d) 260°

- **45.** In the given figure, ABCD is a cyclic quadrilateral, \angle CBQ = 48° and a = 2b. Then, b is equal to
 - (a) 48°
 - (b) 38°
 - (c) 28°
 - (d) 18°

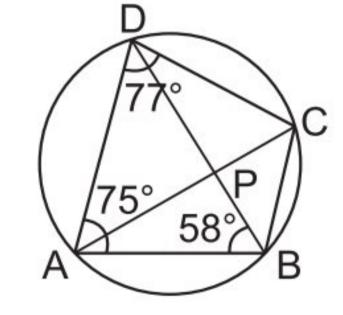


- **46.** In the given figure, ABCD is a quadrilateral inscribed in a circle with centre O. CD is produced to E. If \angle ADE = 95° and \angle OBA = 30°, then \angle OAC is equal to
 - (a) 10°

(b) 5°

(c) 15°

(d) 20°



- **47.** In the given figure, ABCD is a cyclic quadrilateral in which $\angle BAD = 75^{\circ}$, $\angle ABD = 58^{\circ}$ and $\angle ADC = 77^{\circ}$, AC and BD intersect at P. Then, the measure of $\angle DPC$ is
 - (a) 94°

(b) 90°

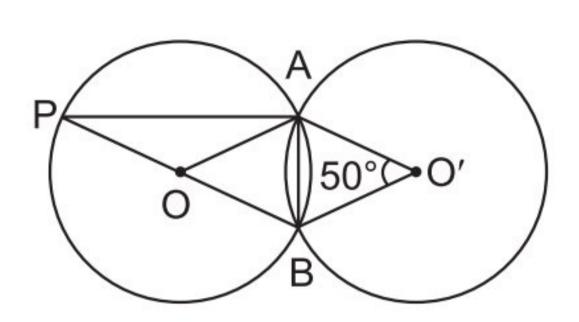
(c) 92°

(d) 105°

- **48.** AD is a diameter of a circle and AB is a chord. If AD = 50 cm, AB = 48 cm, then the distance of AB from the centre of the circle is
 - (a) 5 cm

(b) 6 cm

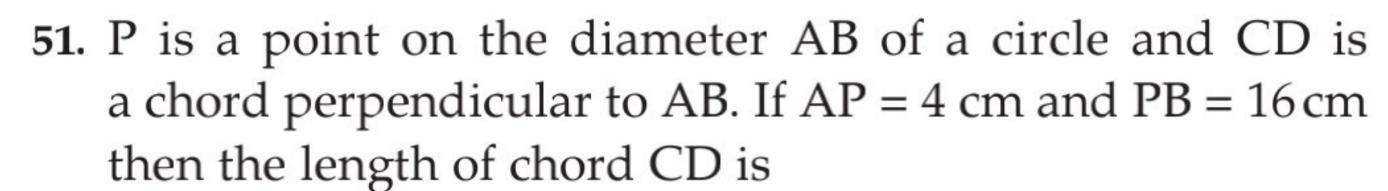
(c) 7 cm


(d) 8 cm

49. The given figure shows two congruent circles with centre O and O' intersecting at A and B. If $\angle AO'B = 50^{\circ}$, then the measure of $\angle APB$ is

(b) 40°

(d) 45°

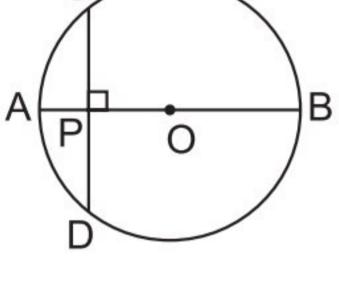

43°

- **50.** In the given figure, if $\angle CAB = 49^{\circ}$ and $\angle ADC = 43^{\circ}$, then the measure of $\angle ACB$ is
 - (a) 96°

(b) 74°

(c) 92°

(d) 88°

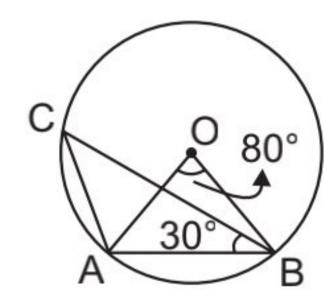


(a) 20 cm

(b) 10 cm

(c) 8 cm

(d) 16 cm


/49°

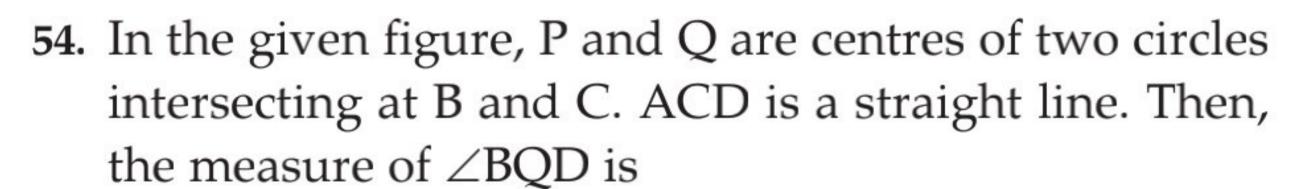
- **52.** In the given figure, if $\angle AOB = 80^{\circ}$ and $\angle ABC = 30^{\circ}$, then $\angle CAO$ is equal to
 - (a) 30°

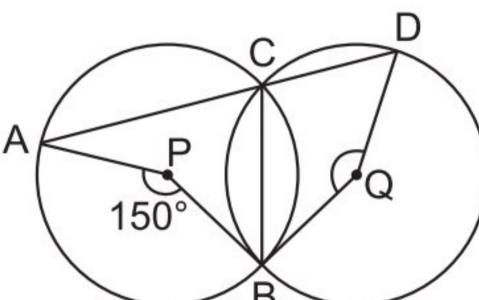
(b) 80°

(c) 60°

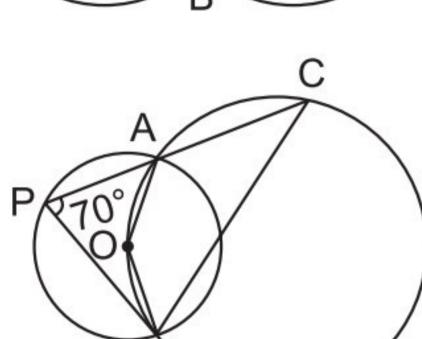
(d) 40°

53. In the given figure, AB is a diameter of the circle APBR. APQ and RBQ are straight lines. If $\angle A = 35^{\circ}$ and $\angle Q = 25^{\circ}$, then the measure of $\angle PBR$ is




(a) 135°

(b) 115°


(c) 155°

(d) 165°

- (a) 115°
- (b) 150°
- (c) 105°
- (d) 130°
- 55. The figure shows two circles which intersect at A and B. The centre of the smaller circle is O and it lies on the circumference of the larger circle. If $\angle APB = 70^{\circ}$, then the measure of $\angle ACB$ is

(a) 50°

(b) 60°

(c) 70°

(d) 40°

Mathematics - Class 9

Chapter 11: Constructions

	MULTIPLE-CHOI	CE QUESTIONS ———
no	ose the correct answer from the giver	n four options in the following questions:
1.	With the help of a ruler and compass	s, it is possible to construct an angle of
	(a) 40°	(b) 65°
	(c) 37.5°	(d) 50°
2.	With the help of a ruler and compass	, it is not possible to construct an angle of
	(a) 7.5°	(b) 82.5°
	(c) 35°	(d) 67.5°
3.	The construction of $\triangle ABC$ in which A	$AB = 5$ cm, $\angle A = 75^{\circ}$ is not possible when
	difference of BC and AC is equal to	
	(a) 4.5 cm	(b) 5.5 cm
	(c) 4 cm	(d) 3.5 cm
4.	The construction of ΔABC , given that	BC = 5 cm, \angle B = 60° is not possible when
	the difference of AB and AC is equal	to
	(a) 3 cm	(b) 4 cm
	(c) 4.2 cm	(d) 5.9 cm
5.	The construction of a triangle ABC, g	given that BC = 3 cm, \angle C = 60° is possible
	when the difference of AB and AC is	equal to
	(a) 3.1 cm	(b) 3 cm
	(c) 2.8 cm	(d) 3.2 cm

Chapter 12: Heron's Formula

		MULTIPLE-CHOI	CE QUESTIONS				
ho	oose the correct answer from the given four options in the following questions:						
1.	. The area of a triangle with base 8 cm and height 10 cm is						
	(a) 80 cm^2	(b) 40 cm^2	(c) 20 cm^2	(d) 18 cm^2			
2.	The sides of a tria	ingle are 12 cm, 16 c	cm and 20 cm. Its a	rea is			
	(a) 48 cm^2	(b) 120 cm^2	(c) 96 cm^2	(d) 160 cm^2			
				[CBSE SP 2012]			
3.		ngle whose sides are					
	(a) 42 cm^2	(b) 6 cm^2	(c) 84 cm^2	(d) 100 cm^2			
20				[CBSE SP 2012]			
4.	<u> </u>	f an equilateral trian	_				
		(b) $16\sqrt{3} \text{ m}^2$					
5.		equilateral triangle	is $16\sqrt{3}$ cm ² , then	n the perimeter of the			
	triangle is	(1.) 0.1	(-) 10	(1) 2(
	(a) 12 cm	(b) 24 cm	(c) 48 cm	(d) 36 cm [CBSE SP 2013]			
6	The edges of a trie	angular board are 6	cm 2 cm and 10 cr				
0.	it at the rate of 70	0	citi, o citi and 10 ci	m. The cost of painting			
	(a) ₹ 7	(b) ₹ 16.80	(c) ₹ 17	(<i>d</i>) ₹ 16			
7.			` '	onals is 6 cm, then its			
	area is			,			
	(a) 28 cm^2	(b) 36 cm^2	(c) 24 cm^2	(d) 20 cm ²			
8.	An isosceles right	triangle has area 8	cm ² . The length of	the hypotenuse is			
	(a) 6 cm	(b) $\sqrt{32}$ cm	(c) 8 cm	(d) 4 cm			
9.	The area of an ise	osceles triangle hav	ing base 24 cm an	d length of one of the			
	equal sides 20 cm						
	(a) 480 cm^2	(b) 196 cm^2	(c) 240 cm^2	(d) 192 cm^2			
10.	•			of the equal side to its			
		area of the triangle		(1) 1 ()			
	(a) $32\sqrt{2}$ cm ²	(b) 32 cm^2	(c) $16\sqrt{2}$ cm ²	(d) 16 cm ²			
11.	•	nd base of an isoscele	es triangle are 11 cm	and 5 cm respectively,			
	then its area is	5 —	5 —	5 —			
	(a) $5\sqrt{11}$ cm ²	(b) $\frac{5}{2}\sqrt{11} \text{ cm}^2$	(c) $\frac{3}{8}\sqrt{11} \text{ cm}^2$	(d) $\frac{3}{4}\sqrt{11} \text{ cm}^2$			
12	If the difference h	netween the semi-ne	erimeter 's' and the	sides a' b' and c' of			

 Δ ABC are 8 cm, 7 cm and 6 cm respectively, then ar(Δ ABC) is

(a) 63 cm^2	(b) 42 cm^2	(c) 84 cm^2	(d) 168 cm^2
TT1 · 1	(, 1 10	14 11	TT1 1 (1 C (1

- **13.** The sides of a triangle are 13 cm, 14 cm and 15 cm. The length of the shortest altitude is
 - (a) 12 cm (b) 11.2 cm (c) 12.9 cm (d) 11.9 cm
- **14.** The sides of a triangle are 17 cm, 25 cm and 26 cm. The length of the altitude to the longest side correct up to two places of decimals is
 - (a) 16.32 cm (b) 34.00 cm (c) 15.69 cm (d) 24.00 cm
- **15.** If the perimeter of a rhombus whose diagonals measure 12 cm and 16 cm is equal to the perimeter of an isosceles triangle having its equal side and the base in the ratio 3 : 2, then the area of the isosceles triangle is
 - (a) $50\sqrt{2}$ cm² (b) $25\sqrt{2}$ cm² (c) $75\sqrt{2}$ cm² (d) $100\sqrt{2}$ cm²

Chapter 13: Surface Areas and Volumes

	8 <u>6</u>	MULTIPLE-CHOI	CE QUESTIONS	<u> </u>
Cho	ose the correct ans	swer from the giver	n four options in the	e following questions:
1.	The total surface a	area of a cube is 96	cm ² . The volume o	f the cube is
	(a) 27 cm^3	(b) 64 cm^3	(c) 8 cm^3	(d) 512 cm^3
2.		0		n be formed by melting
	a cubic block of m	netal of edge 15 cm	is	
	(a) 125	(b) 45	(c) 75	(d) 135
3.			rface area of a cub	e of side 4 cm and its
	lateral surface are		2	2
		(b) 20 cm^2	<u></u>	(d) 24 cm^2
4.	The volume of a c	ube whose diagona	al is $2\sqrt{3}$ cm is	
	(a) 8 cm^3		(b) 4 cm^3	
	(c) $8\sqrt{3}$ cm ³		(<i>d</i>) $4\sqrt{3}$ cm ³	
5.	The number of pla	anks of dimensions	$(5 \text{ m} \times 25 \text{ cm} \times 10)$	cm) that can be placed
	in a pit which is 2	0 m long, 6 m wide	and 80 cm deep is	
	(a) 764	(b) 840	(c) 768	(d) 960
6.	The number of 6 i	m cubes that can be	e formed from anot	her cuboid measuring
	$18 \text{ m} \times 12 \text{ m} \times 9 \text{ n}$	n is		
	(a) 9	(b) 10	(c) 12	(d) 15
7.	The length of the l	ongest rod that can	be placed in a room	n 12 m long, 9 m broad
	and 8 m high is			
	(a) 15 m	(b) 20 m	(c) 18 m	(d) 17 m
8.	Ŭ.		-	olume of a cuboid of
		\times 75 cm \times 80 cm is		(T) (A
	(a) 48 cm	(b) 60 cm	(c) 36 cm	(d) 42 cm
9.				ug and the earth taken
	•		•	num load of 540 m ³ of nake to dispose of the
	earth dug out is	uniber of founds th	ne carrier nau to n	lake to dispose of the
	(a) 20	(b) 10	(c) 15	(d) 12
10		` /		$2 \text{ m} \times 9 \text{ m}$. If a bag of
10.		-		imber of bags that can
	be stored in the gr	-		
	(a) 1800	(b) 3600	(c) 2400	(d) 3000

11.		dimensions 30 cm × 23 cm, then the num		melted and converted ed is
	(a) 2840	(b) 2130	(c) 1420	(d) 710
12.	The volume of a red 7 cm, then its height		er is 2310 cm ³ . If th	ne radius of its base is
	(a) 7.5 cm	(b) 22.5 cm	(c) 15 cm	(d) 30 cm
13.	If a square paper surface area is	of side 25 cm is ro	olled to form a cyli	inder, then its curved
	(a) 625 cm^2	(b) 500 cm^2	(c) 250 cm^2	(d) 1000 cm^2
14.	The curved surface	e area of a well of c	diameter 3.5 m and	depth 10 m is
	(a) 135 m^2	(b) 35 m^2	(c) 70 m^2	$(d) 110 \text{ m}^2$
15.	The curved surface and height 3 m is	e area of a cylinder	whose circumfere	nce of the base is 22 m
	(a) 66 m^2	(b) 132 m^2	(c) 33 m^2	$(d) 99 \text{ m}^2$
	area is			s outer curved surface
	(a) 21 m^2	(b) 63 m^2	(c) 66 m^2	$(d) 42 \text{ m}^2$
	2 m at the rate of	₹ 2 per m² is		m deep well of radius
	(a) ₹ 352	(b) ₹ 56		(d) ₹ 176
18.	14 cm is			area 88 cm ² and height
	(a) 1 cm		3	(d) 2.5 cm
19.	is			t 4 cm and radius 3 cm
	(a) 132 cm^2	(b) 66 cm ²	(c) 198 cm^2	(d) 99 cm^2
20.	If the lateral surfa- base diameter is	ce area of a cylinde	r is 132 cm ² and its	height is 7 cm, then its
	(a) 5 cm	(b) 3 cm	(c) 6 cm	(d) 4 cm
21.		e of the base of a rig 3 cm ² , then the sum		r is 44 cm. If its whole adius is
	(a) 16 cm	(b) 18 cm	(c) 20 cm	(d) 22 cm
22.		ace area of a righ ts base is 110 cm, th	and the same of th	r is 4400 cm ² . If the
	(a) 36 cm	(b) 38 cm	(c) 40 cm	(d) 42 cm
23.	,	e of maximum volu		out of an iron cube of nder is
	(a) $32\pi \text{ cm}^3$	(b) $24\pi \text{ cm}^3$	(c) $16\pi \text{ cm}^3$	(<i>d</i>) $28\pi \text{ cm}^3$

24.				
	0		_	en the number of full and height 3.5 m is
	(a) 69	(b) 46	(c) 92	(d) 138
25.		atio of the volume	•	ved, keeping the same nder to the volume of
	(a) 1:4	(b) 4:1	(c) 1:2	(d) 2:1
26.	-	rass is dropped int		a depth of 30 cm. If a rises by 9 cm, then the
	(a) 12 cm	(b) 15 cm	(c) 8 cm	(d) 18 cm
27.		ylinders are in the r of their volumes is	atio 2 : 3 and their	heights are in the ratio
	(a) $20:27$	(b) 20:37	(c) $17:27$	(d) 10:17
28.	The volume of a s	sphere of diameter 4	12 cm is	
	(a) 38000 cm^3		(b) 34000 cm^3	
	(c) 30000 cm^3		(d) 38808 cm ³	
29.	The surface area of	of a sphere of radius	s 3.5 cm is	
	(a) 77 cm^2	(b) 154 cm^3	(c) 154 cm^2	(d) 120 cm^2
30.	The volume of a diameter is	sphere is numeri	cally equal to its	surface area, then its
	(a) 6 units	(b) 3 units	(c) 1 unit	(d) 2 units
				[CBSE SP 2011]
	A cube of side 4 cr	•	e touching its sides.	[CBSE SP 2011] Find the approximate
	volume of the gap	o in between.	touching its sides. (c) 33.52 cm ³	Find the approximate
	volume of the gap (a) 33 cm ³	in between. (b) 30.48 cm ³	(c) 33.52 cm ³	Find the approximate
	volume of the gap (a) 33 cm ³ The ratio of the ra	in between. (b) 30.48 cm ³	(c) 33.52 cm ³ whose volumes are	Find the approximate (d) 34 cm ³ in the ratio 64 : 27 is
32.	volume of the gap (a) 33 cm ³ The ratio of the ratio (a) 16:9	in between. (b) 30.48 cm ³ Idii of two spheres (b) 8:3	(c) 33.52 cm ³ whose volumes are (c) 10:7	Find the approximate (d) 34 cm ³ in the ratio 64 : 27 is
32.	volume of the gap (a) 33 cm ³ The ratio of the ratio (a) 16:9 Given that the sur	in between. (b) 30.48 cm ³ Idii of two spheres (b) 8:3	(c) 33.52 cm^3 whose volumes are (c) $10:7$ rical shot-put is 616	Find the approximate (d) 34 cm ³ in the ratio 64 : 27 is (d) 4 : 3 cm ² , its diameter is
32.	volume of the gap (a) 33 cm ³ The ratio of the ratio (a) 16:9 Given that the sum (a) 12 cm If a sphere of radius	in between. (b) 30.48 cm ³ Idii of two spheres (b) 8:3 Iface area of a spheres (b) 14 cm	(c) 33.52 cm ³ whose volumes are (c) 10:7 rical shot-put is 616 (c) 16 cm d recast into a right	Find the approximate (d) 34 cm ³ in the ratio 64 : 27 is (d) 4 : 3 cm ² , its diameter is
32.	volume of the gap (a) 33 cm ³ The ratio of the ratio (a) 16:9 Given that the sum (a) 12 cm If a sphere of radiu 3 cm, then the radius	in between. (b) 30.48 cm ³ dii of two spheres (b) 8:3 rface area of a spheres (b) 14 cm as 3 cm is melted an	(c) 33.52 cm ³ whose volumes are (c) 10:7 rical shot-put is 616 (c) 16 cm d recast into a right	Find the approximate (d) 34 cm ³ in the ratio 64 : 27 is (d) 4 : 3 cm ² , its diameter is (d) 18 cm circular cone of height
32. 34.	volume of the gap (a) 33 cm ³ The ratio of the ratio (a) 16:9 Given that the sum (a) 12 cm If a sphere of radio 3 cm, then the radio (a) 27 cm If a spherical ballo	in between. (b) 30.48 cm ³ dii of two spheres (b) 8:3 rface area of a sphere (b) 14 cm as 3 cm is melted and (b) 3 cm (b) 3 cm	(c) 33.52 cm ³ whose volumes are (c) 10:7 rical shot-put is 616 (c) 16 cm d recast into a right ne cone is (c) 6 cm its radius when inf	Find the approximate (d) 34 cm ³ in the ratio 64 : 27 is (d) 4 : 3 cm ² , its diameter is (d) 18 cm circular cone of height (d) 9 cm lated, then the ratio of
32. 34.	volume of the gap (a) 33 cm ³ The ratio of the sum (a) 16:9 Given that the sum (a) 12 cm If a sphere of radiu 3 cm, then the radiu (a) 27 cm If a spherical ballothe volume of the	in between. (b) 30.48 cm ³ dii of two spheres (b) 8:3 rface area of a sphere (b) 14 cm as 3 cm is melted and (b) 3 cm on grows to twice	(c) 33.52 cm ³ whose volumes are (c) 10:7 rical shot-put is 616 (c) 16 cm d recast into a right ne cone is (c) 6 cm its radius when inf	Find the approximate (d) 34 cm ³ in the ratio 64 : 27 is (d) 4 : 3 cm ² , its diameter is (d) 18 cm circular cone of height (d) 9 cm lated, then the ratio of
32. 34.	volume of the gap (a) 33 cm ³ The ratio of the ratio of the ratio (a) 16:9 Given that the sum (a) 12 cm If a sphere of radiu 3 cm, then the radiu (a) 27 cm If a spherical ballothe volume of the (a) 8:1	in between. (b) 30.48 cm ³ dii of two spheres (b) 8:3 face area of a sphere (b) 14 cm as 3 cm is melted and (b) 3 cm on grows to twice inflated balloon to	(c) 33.52 cm ³ whose volumes are (c) 10:7 rical shot-put is 616 (c) 16 cm d recast into a right ne cone is (c) 6 cm its radius when inf the original balloon (c) 6:1	Find the approximate (d) 34 cm ³ in the ratio 64 : 27 is (d) 4 : 3 cm ² , its diameter is (d) 18 cm circular cone of height (d) 9 cm lated, then the ratio of n is (d) 5 : 1

Mathematics - Class 9 51

37.	The total surface a	area of a cone of rac	lius $2r$ and slant he	eight $\frac{1}{2}$ is
	(a) $2\pi r(l+r)$	(b) $\pi r \left(l + \frac{r}{4} \right)$	(c) $\pi r(4r+l)$	(<i>d</i>) $2\pi r$ [CBSE SP 2010]
38.	The total surface a	area of a cone of rac	lius 7 m and slant l	neight 10 m is
	(a) 374 m^2	(b) 598.4 m^2	(c) 561 m^2	(d) 280.5 m^2
39.	The volume of a c	one is 1570 cm ³ . If i	t is 15 cm high the	n its base area is
	(a) 415 cm^2	(b) 413 cm^2	(c) 314 cm^2	(d) 514 cm^2
40.	If the slant height	of a cone of base ra	dius 7 cm is 25 cm	, then its height is
	(a) 32 cm	(b) 24 cm	(c) 18 cm	(d) 36 cm
41.	The diameter of the	he base of a cone of	height 15 cm and v	volume 770 cm ³ is
	(a) 7 cm	(b) 14 cm	(c) 21 cm	(d) 10.5 cm
42.	A conical tent is 2	1 m high and the di	iameter of its base	is 4 m. If 10 men sleep
	in it, then the aver	rage number of cub	ic dm of air space p	per man is
	(a) 4400	(b) 8800	(c) 8400	(d) 4800
43.	-	240 m in radius and not the length of clot	· ·	nade of cloth which is e pandal is
	(a) 625 m	(b) 676 m	(c) 600 m	(d) 624 m
44.		•	-	al. If their base radius e height of the cylinder
	(a) $2:3$	(b) 1:1	(c) 2:1	(d) 1:2
45.		adii of bases of two atio of their volumes		ne ratio of their heights
	(a) $1:2$	(b) 2:1	(c) 1:3	$(d) \ 3:1$
46.	The cost of digging 1	0 1	ons 4.5 m × 2.5 m	× 2.5 m at the rate of
	(a) ₹ 281.25	(<i>b</i>) ₹ 562.50	(c) ₹ 1125	(<i>d</i>) ₹ 1687.50
	The volume of resignation joined end to end		ed when two cubes	s each of side 6 cm are
	(a) 648 cm^3	(b) 864 cm^3	(c) 432 cm^3	(d) 416 cm^3
48.	The number of litr can hold is	es that a cuboidal wa	ater tank of dimensi	ions $6 \mathrm{m} \times 5 \mathrm{m} \times 4.5 \mathrm{m}$
	(a) 135000 L	(b) 135 L	(c) 270 L	(d) 270000 L
49.	The surface area of and 20 cm respect		ngth, breadth and h	neight are 15 cm, 10 cm
	(a) 1300 cm ²	(b) 650 cm ²	(c) 1950 cm ²	(d) 2600 cm ²

50.				
	(a) 400 cm^2	(b) 800 cm^2	(c) 200 cm^2	$(d) 600 \text{ cm}^2$
51.	The volume of a height 25 cm is	cylinder whose ci	rcumference of the	e base is 132 cm and
	(a) 3300 cm^3	(b) 34650 cm^3	(c) 9900 cm^3	$(d) 19800 \text{ cm}^3$
52.		-		
	(a) $1:3$	(<i>b</i>) 1:2	(c) 2:1	(d) 3:1
53.				00 cm ² and its volume
	(a) 2880 cm^2		(b) 2760 cm^2	
	(c) 2640 cm^2		(d) 2600 cm^2	
54.	The total surface a	area of a 7 cm high	cylinder having a v	volume of 448π cm ³ is
	(a) $\frac{5110}{7}$ cm ²		(b) $\frac{5280}{7}$ cm ²	
	(c) $\frac{5287}{7}$ cm ²		(<i>d</i>) 755 cm ²	
55.			9 m high conical	tent is 44 m, then the
			(c) 1386 m^3	(d) 462 m^3
56.			15 1174 444 - 44 1690 - 1690 - 1690	
	(a) 1.155 L	(b) 3.85 L	(c) 0.5775 L	(d) 7.7 L
57.			e radius 7 cm and	height 24 cm, the area
	(a) 550 cm^2	(b) 704 cm^2	(c) 825 cm^2	(d) 1100 cm^2
58.	The area of canva 7 m is	s required for a con	nical tent of height	24 m and base radius
	(a) 550 m^2	(b) 1100 m^2	(c) 275 m^2	(d) 825 m ²
59.	full of water. If 1	cubic dm of water v		
	(a) 26.5 kg-wt	13300 cm ³ (b) 34650 cm ³ (c) 9900 cm ³ (d) 19800 cm ³ cylinder and a cone have equal base radius. If their volumes are same, then he ratio of the height of the cylinder to the height of the cone is (d) 1:3 (b) 1:2 (c) 2:1 (d) 3:1 (d) 3:1 (d) 3:1 (d) 2880 cm ² (b) 2760 cm ² (d) 2600 cm ² (d) 2600 cm ² (d) 2600 cm ² (e) 2640 cm ² (f) 2640 cm ² (g) 2670 cm ² (he total surface area of a 7 cm high cylinder having a volume of $\frac{5280}{7}$ cm ² (f) $\frac{5287}{7}$ cm ² (g) $\frac{5287}{7}$ cm ² (g		
60.			m. If its capacity is	3.3 litres of milk, then
			(c) 15 cm	(d) 35 cm
61.	` '			
vendaliji.)		1		

62.	-	owl is made of stenen				
		(b) 154 cm^2				
63.		of a solid sphere				
	the solid hemisph	ere of the same rac	dius	is		
	(a) 693 cm^2	(b) 1039.5 cm^2	(c)	519.75 cm^2	(d) 155	9.25 cm^2
64.	-	herical bullets each k of lead 11 m lon				
	(a) 8400		(b)	4200		
	(c) 6300		(<i>d</i>)	5600		
65.		olid spheres each 6 der of height 45 cn				
	(a) 7		(b)	12		
	(c) 10		<i>(d)</i>	5		
66.	None and the second	of internal and exter 8				1 2
	(a) 14 cm		(b)	12 cm		
	(c) 16 cm		(<i>d</i>)	8 cm		
67.	*	ius $2r$ has the same			a cone v	with a circular
	(a) 32r		(b)	30r		
	(c) 28 r		(<i>d</i>)	24r		
68.		slant height of a constant stant height of a constant of a			7 : 13 a	and its curved
	(a) 7 cm		(b)	10 cm		
	(c) 10.5 cm		(<i>d</i>)	7.5 cm		
69.	The curved surfactor of radius r is	e area of a right cir	culai	cylinder which	ı just end	closes a sphere
	(a) $2\pi r^2$		(b)	$4\pi r^2$ $6\pi r^2$		
	(c) $8\pi r^2$		(<i>d</i>)	$6\pi r^2$		
70.	If the radius (r) of	a sphere is reduce	ed to	its half, then no	ew volu	me would be
	(a) $\frac{1}{2} \left(\frac{4}{3} \pi r^3 \right)$		(b)	$\frac{4}{3}\pi\left(\frac{r^3}{2}\right)$		
	(c) $\frac{4}{3}\pi\left(\frac{r^3}{8}\right)$		(<i>d</i>)	$\frac{4}{6}\pi\left(\frac{r^3}{8}\right)$		[CBSE SP 2010]

Chapter 14: Statistics

	MULTIPLE-CHOI	CE	QUESTIONS	
Cho	ose the correct answer from the giver	n foi	ar options in the	e following questions:
1.	A student collects information about locality consisting of a hundred hous			0 0
	(a) primary data		secondary data	-
	(c) grouped data	(<i>d</i>)	arrayed data	
2.	To analyse the election results, the da	ta is	s collected from	newspapers. The data
	thus collected is known as			1 1
	(a) primary data	(b)	secondary data	ì
	(c) raw data	(<i>d</i>)	grouped data	
3.	Which of the following variables are	disc	crete?	
	1. Size of shoes	2.	Number of pag	ges in a book
	3. Distance travelled by a train	4.	Time	
	(a) 1 and 4 (b) 1 and 3	(c)	1 and 2	(d) 2 and 4
4.	For a given data, the difference leads observations is known as its	betv	veen the maxi	mum and minimum
	(a) class	(b)	range	
	(c) class mark	(<i>d</i>)	class limit	
5.	A data is such that its maximum valu value is	e is	75 and range is	20, then the minimum
	(a) 95 (b) 55	(c)	20	(d) 75
6.	In a grouped frequency distribution 20–30,, then the class width is	n, t	he class interv	als are 0–10, 10–20,
	(a) 20 (b) 15	(c)	10	(d) 30
7.	In a grouped frequency distributio 41–60,, then the class width is	n, t	he class interv	als are 1–20, 21–40,
	(a) 10.5 (b) 30	(c)	10	(d) 20
8.	Class size of a distribution having 28	, 34	, 40, 46 and 52 a	s its class marks is
	(a) 3 (b) 4	(c)	<u> </u>	(d) 6
9.	Given the class intervals $0-10$, $10-20$), 20	-30,, then 10) is considered in class
	(a) $0-10$ (b) $10-20$	(c)	0-20	(d) 10-30
10.	The class mark of the class interval 2.	.4–6	.6 is	
	(a) 2.4 (b) 4.5	(c)	6.6	(d) 4.2
11.	The class marks of a frequency distri	buti	on are as given	below:

38, 43, 48, 53, 58

The class corresponding to the class mark 43 is

- (a) 38-48 (b) 38.5-48.5 (c) 35.5-45.5 (d) 40.5-45.5
- 12. The class size of a distribution is 25 and the first class interval is 200–224. Then, the class marks of first two class intervals are
 - (a) 212, 237

(b) 237, 262

(c) 212, 262

- (d) 237, 287
- 13. Observe the table given below and choose the correct alternative in each case.

Column	P	Q	R	S	Т	U
Marks scored	30-40	40-50	50-60	60-70	70-80	80-90
Number of students	4	8	12	10	7	4

- The class mark of R is
 - (a) 50
- (b) 60
- (c) 55
- (*d*) 12

- (ii) The class width of T is
 - (a) 70
- (b) 10
- (c) 80
- (d) 7

- (iii) The frequency of Q is
 - (a) 50
- (b) 40
- (c) 45
- (d) 8

- (iv) The class size of P is
 - (a) 80
- (b) 10
- (c) 90
- (d) 4
- 14. A grouped frequency table with class intervals of equal sizes using 3–5 (5 included in this interval) as one of the class intervals is constructed for the following data:

9

5

3

5 3

The frequency of the class 3-5 is

- (b) 11
- (c) 5
- (*d*) 3

3

3

15. The given cumulative frequency distribution shows the class intervals and their corresponding cumulative frequencies.

Class	10-20	20-30	30-40
Cumulative frequency	5	14	25

Then, the frequency of class interval 20–30 is

(a) 5

(a) 8

- (b) 9
- (d) 20
- 16. 'Less than' cumulative frequency table for a given data is as follows:

Marks	Less than 10	Less than 20	Less than 30	Less than 40
Cumulative frequency	3	17	37	92

Then, the frequency of class interval 20–30 is

(a) 20

(b) 14

(c) 55

(d) 34

17. 'More than' cumulative frequency table for a given data is as follows:

Marks	More than	More than	More than	More than
	89	79	69	59
Cumulative frequency	8	18	30	65

Then, the fi	requency of	of the	class	interval	70-	80	is
--------------	-------------	--------	-------	----------	-----	----	----

(a) 10

(b) 35

(c) 12

(d) 22

18. In a bar graph, 0.25 cm length of a bar represents 100 people. Then, the length of bar which represents 2000 people is

(a) 4 cm (b) 4.5 cm (c) 5 cm

(d) 3.5 cm

19. In a bar graph, the widths of bars

(a) have no significance

(b) are proportional to the corresponding heights

(c) are proportional to the corresponding frequencies

(d) are proportional to the space between two consecutive bars

20. For drawing a frequency polygon of a continuous frequency distribution, we plot the points whose ordinates are the frequency of respective classes and abscissa are respectively

(a) lower limits of the classes

(b) upper limits of the classes

(c) class marks of the classes

(d) upper limits of preceeding classes

21. One of the sides of a frequency polygon is

(a) the x-axis

(b) the y-axis

(c) either of the coordinate axes

(*d*) neither of the coordinate axes

22. Which of the following is not a measure of central tendency?

(a) Mean

(b) Median

(c) Mode

(d) Standard deviation

23. The mean for counting numbers through 100 is

(a) 50

(b) 49.5

(c) 50.5

(d) 51

24. The mean of first four prime numbers is

(a) 4

(b) 4.5

(c) 3.75

(d) 4.25

25. The smallest of three consecutive even integers is 32. Then, the mean of the three integers is

(a) 34

(b) 36

(c) 33

(d) 35

26.	If each observation of the data i	s increased by 3, th	en their mean
	(a) becomes 3 times the original	l mean	
	(b) is decreased by 3		
	(c) is increased by 3		
	(d) remains the same		
27.	The mean of 30 observations	is 12. If 25 is su	btracted from the sum of
	observations, then remaining su	ım is	
	(a) 375	(b) 335	
	(c) 385	(d) 365	
28.	The mean of prime numbers be	tween 30 and 40 is	
	(a) 37	(b) 31	
	(c) 34	(d) 36	
29.	The mean of x_1 , x_2 is 6 and mean	n of x_1, x_2, x_3 is 7.	The value of x_3 is
	(a) 2	(b) 9	
	(c) 5	(d) 4	[CBSE SP 2010]
30.	Sheila received <i>x</i> marks in two o	of her tests and y ma	arks in three other tests. Her
	average score in all the five tests	s in terms of x and	y is
	(a) $\frac{3x + 2y}{5}$	(b) $\frac{2x + 3y}{5}$	
	5	9	
	(c) $\frac{3x + 2y}{3}$	$(d) \frac{2x+3y}{2}$	
31.	The marks obtained by 10 stude		ics test are 75, 90, 70, 50, 70,
	50, 75, 90, 70 and 75. Their med:		
	(a) 70 (c) 72.5	(b) 71.5 (d) 75	
20		\	ding and on the 9th and 0th
32.	Out of sixteen observations arr observations are 25 and 27. The	O	anig order, the our and our
	(a) 25 (b) 27	(c) 26.5	(d) 26
33.	The following observations hav		
00.		26, 30, <i>x</i> , 37, 38, 39,	
	If the median of the data is 35, t		
	(a) 35 (b) 40	(c) 45	(d) 50
34.	Mode of a set of observations is		
0 2.	(a) occurs most frequently		
	(b) divides the observations into	o two equal parts	
	(c) is the mean of the middle tw		
	(d) is the sum of the observation	ns	
35.	The mode of 4, 6, 7, 6, 4, 2, 4, 8,	6, 4, 3, 4, 6 is	
	(a) 6	(b) 4	
	(c) 3	(<i>d</i>) 2	[CBSE SP 2010]

- **36.** The given data is 3, 5, 6, 7, 5, 4, 7, 5, 6, *x*, 8 and 7. Then, the value of *x* for which the mode of the above data will be 7, is
 - (a) 5
- (b) 6
- (c) 8
- (d) 7
- 37. A set of data consists of six numbers: 7, 8, 8, 9, 9 and x

The difference between the modes when x = 9 and x = 8 is

- (a) 4
- (b) 1
- (c) 2
- (d) 3
- 38. For a frequency distribution, mean, median and mode are connected by the relation:
 - (a) Mode = 3 Median 2 Mean
 - (b) Mode = 3 Median + 2 Mean
 - (c) Mode = 3 Mean 2 Median
 - (d) Mode = 2 Median 3 Mean
- 39. Median of the following observations, arranged in an ascending order is 22.

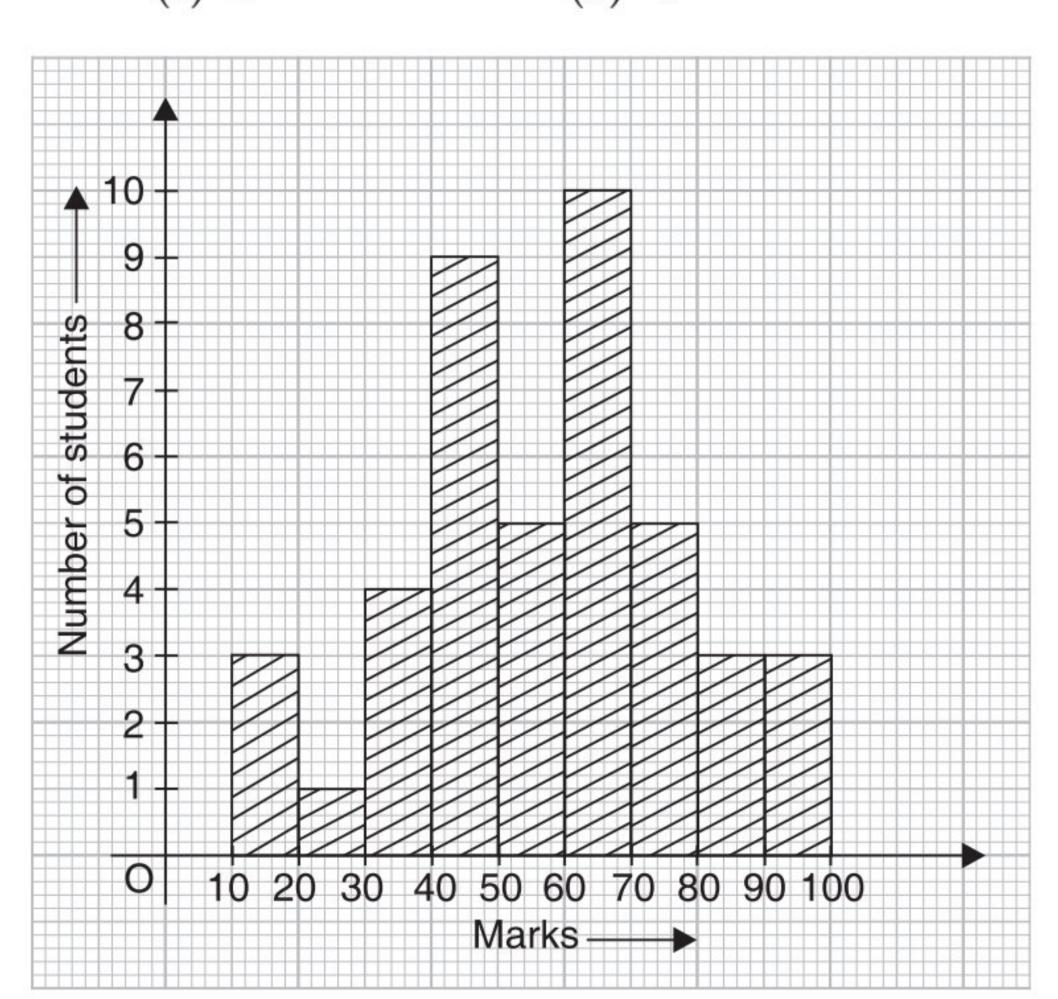
$$8, 11, 13, 15, x + 1, x + 3, 30, 35, 40, 43$$

Then, the value of x is

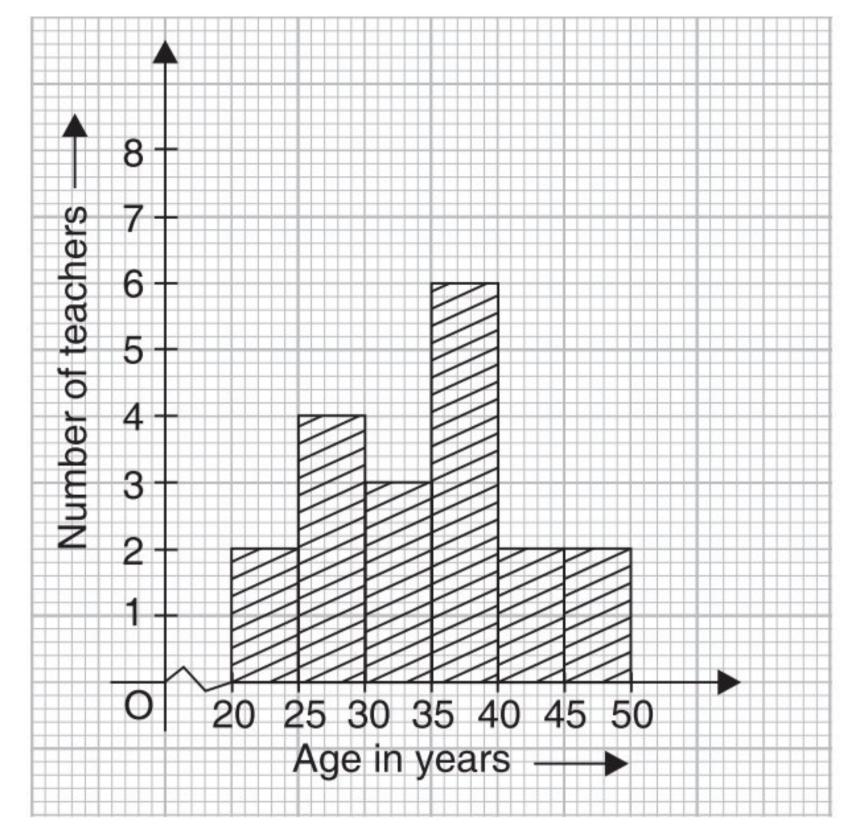
- (a) 16
- (b) 18
- (c) 19
- (d) 20
- **40.** For which set of data does the median equal the mode?

 - (a) 3, 3, 4, 5 (b) 3, 3, 4, 5, 6 (c) 3, 3, 4 (d) 3, 4, 5, 6, 6

- 41. A grouped frequency distribution table with classes of equal sizes using 105–120 (120 not included) as one of the class interval is constructed for the following data:


125	126	140	98	128	78	108	67
87	149	102	136	145	112	103	84
123	130	120	89	103	65	96	65

The number of classes in the distribution will be


- (a) 7
- (b) 6
- (c) 5
- (d) 4

- **42.** In the graph given alongside, the number of students who scored 60 or more marks is

 - (b) 20
 - (c) 22

- **43.** The graph given alongside shows the frequency distribution of the age of 22 teachers in a school. The number of teachers whose age is less than 40 years is
 - (a) 15
 - (b)
 - (c) 16

44.	Class interval	5-10	10-15	15-25	25-45	45-75
	Frequency	6	12	10	8	15

For the frequency distribution given above, the adjusted frequency for the class 25 - 45 is:

- (a) 6
- (b) 5
- (c) 3
- (d) 2

45. The average of three consecutive even integers is 20. Then, the integers are

(a) 14, 16, 18

(b) 20, 22, 24

(c) 16, 18, 20

(d) 18, 20, 22

46. Vihaan has marks of 92, 85 and 78 in three mathematics tests. In order to have an average of exactly 87 for the four math tests, he should obtain

(*a*) 90 marks

(*b*) 92 marks

(*c*) 93 marks

(*d*) 91 marks

47. If the mean of x and $\frac{1}{x}$ is M, then the mean of x^2 and $\frac{1}{x^2}$ is

- (a) $2M^2 + 1$ (b) 2M + 1 (c) 2M 1 (d) $2M^2 1$

48. The mean of six numbers is 23. If one of the numbers is excluded, the mean of the remaining numbers becomes 20. The excluded number is

- (a) 36
- (b) 38
- (c) 39

49. The mean of five observations is 15. If the mean of first three observations is 14 and that of last three is 17, then the third observation is

- (a) 29
- (b) 18
- (c) 31
- (d) 32

50. The mean of *n* observations is \bar{x} . If the first item is increased by 1, second by 2, third by 3 and so on, then the new mean is

(a) $\overline{x} + \frac{n+1}{2}$

(b) $\overline{x} + \frac{n}{2}$

(c) $\overline{x} + n$

 $(d) \ \overline{x} + \frac{n(n+1)}{2}$

51.	Variable	1	2	x	4	5
	Frequency	2	3	4	5	6

The mean of the above frequency distribution is 3.5, then the value of x is

- (a) 4
- (b) 3
- (c) 2

52. If the mean of the observations:

x, x + 3, x + 5, x + 7, x + 10 is 9, the mean of last three observations is

- (a) $11\frac{2}{3}$ (b) $11\frac{1}{3}$ (c) $10\frac{1}{3}$ (d) $10\frac{2}{3}$

53. The traffic police recorded the speed (in km/h) of 10 motorists as 48, 52, 57, 55, 42, 39, 60, 49, 53 and 47. Later an error in recording instrument was found. If the instrument had recorded the speed 5 km/h less in each case, then the correct average speed of the motorists is

- (a) 50.2 km/h (b) 52.5 km/h (c) 55.2 km/h (d) 54.5 km/h

Scanned with CamScanne

54. The difference between the mean and median of first five prime numbers is

- (a) 1
- (b) 0.4 (c) 0.6

55. When the data consists of 3, 4, 5, 4, 3, 4, 5, which statement is true?

(a) mean > median

(b) mean > mode

(c) median < mode

(d) mean = mode

Chapter 15: Probability

	MULTIPLE-CHO	ICE QUESTIONS						
Choose the correct answer from the given four options in the following questions:								
1. The sum of the probabilities of all events of a trial is								
(a) less than 1		(b) 1						
(c) greater than 1		(d) between 0 and	1 1					
2. The probability of	f a sure event is							
(a) more than 1		(b) 1						
(c) less than 1		(d) between 0 and	l 1					
3. Which of the follo	wing cannot be em	npirical probability	of an event?					
$(a) \frac{4}{5}$	(<i>b</i>) 1	(c) 0	(d) $\frac{5}{4}$ [CBSE SP 2012]					
4. The probability of	f an impossible eve	nt is						
(a) 1	(b) less than 1	(c) 0	(d) more than 1					
by her. The proba		he boundary 8 time not hit a boundary	es out of 50 balls played is					
(a) $\frac{4}{25}$	(b) $\frac{21}{25}$	(c) $\frac{41}{50}$	$(d) \frac{1}{50}$					
	00 times and odd n		ed 153 times. Then, the					
(a) $\frac{147}{300}$	(b) $\frac{153}{300}$	(c) $\frac{174}{300}$	$(d) \frac{147}{153}$					
	n tossing a thumbt	either with the pin ack the probability						
of the pin facing ι	ıp is	4	Pin up Pin down					
(a) 0	(b) 1	(c) $\frac{1}{2}$	(d) less than $\frac{1}{2}$					
		nel was correct 125 It was not correct is	times out of 365 days.					
(a) $\frac{25}{73}$	(b) $\frac{5}{73}$	(c) $\frac{16}{73}$	$(d) \frac{48}{73}$					
	ed 100 times and the probability of getti		imes and tail 42 times.					
(a) $\frac{1}{2}$	(b) $\frac{21}{50}$	(c) $\frac{29}{50}$	$(d) \frac{42}{58}$					
10. Two coins are tos	sed simultaneously	v 300 times. Either	one or two heads are					

obtained 198 times. The probability of getting no head is

- (a) 0.45

- (b) 0.21 (c) 0.36 (d) 0.34
- 11. In n trials of a random experiment, if an event E happens m times, then P(E) is equal to