

(जम्मू संभाग)

KENDRIYA VIDYALAYA SANGATHAN

(JAMMU REGION)

SAMPLE PAPER FOR CLASS X MATHEMATICS STANDARD (041)

क्षेत्रीय कार्यालय, जम्मू, नज़दीक राजकीय चिकित्सालय, गाँधी नगर जम्मू-180004

REGIONAL OFFICE, JAMMU, NEAR GOYT. HOSPITAL, GANDHI NAGAR, JAMMU-180004

SAMPLE PAPER SET- 1

CLASS - X

SUBJECT- MATHS (STD)

TIME – 3 HOURS

M.M-80 MARKS

General Instructions:

- 1. This Question Paper has 5 Sections A, B, C, D, and E.
- 2. Section A has 20 Multiple Choice Questions (MCQs) carrying 1 mark each.
- 3. Section B has 5 Short Answer-I (SA-I) type questions carrying 2 marks each.
- 4. Section C has 6 Short Answer-II (SA-II) type questions carrying 3 marks each.
- 5. Section D has 4 Long Answer (LA) type questions carrying 5 marks each.
- 6. Section E has 3 Case Based integrated units of assessment (4 marks each) with subparts of

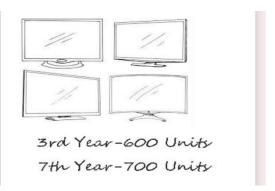
the values of 1, 1 and 2 marks each respectively.

7. All Questions are compulsory. However, an internal choice in 2 Qs of 2 marks, 2 Qs of 3 marks

and 2 Questions of 5 marks has been provided. An internal choice has been provided in the $\mathbf{2}$

marks questions of Section E.

8. Draw neat figures wherever required. Take π =22/7 wherever required if not stated.


	SECTION A	
	Section A consists of 20 questions of 1 mark each	
sno		Marks
1	Express as a product of prime factors: 216 (a) 2X3X4X4 (b) 2X2X2 X17 (c) 2X2X3X17 (d) none of above	1
2	Find LCM of 45 and 96 (a) 3 (b) 5 (c) none of above	1
3	Find zeros of quadratic polynomial x ² +x -20 (a) 4,-5 (b) -4,5 (b) -4,-5 (d) none of above	1
4	Graphically, the pair of equations given by $2x+3y=0$ 4x +6y+9=0 represents two lines which are (a) intersecting at exactly one point. (b) parallel. (c) coincident. (d) intersecting at exactly two points.	1
5	Condition for no real roots for a quadratic equation ax ² +bx+c=0 is	1

	(a) b2 - 4ac	is greater	than 0 (b)	b ² -4ac is less	s than 0		
	(c) b^2 -4ac	=0 (d)	all of abo	ove			
6	Find distance be (a) 5 (b) 25	etween pa	oir of points ((d) none of	(2,3) and (4, above	,1)		1
7	All triangles are similar (a)isosceles (b) equilateral (c) scalene (d) all of above						
8	A point on x axis is represented by (i) (x,0) (II) (0,x) (iii) none of above						
9	A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O at a point Q so that OQ = 12 cm. Length PQ is : (A) 12 cm (B) 13 cm (C) 8.5 cm (D) $\sqrt{119}$						
10	If PQR is a right	ht angled	triangle ,righ	it angled at Q	, find tan P –	- cot R	1
11	$9\sec^2 A - 9\tan^2 A =$ (a) 1 (b) 9 (c) 8 (d) 0						1
12	The value of cos x increases if x (a) Increases (b) decreases						
13	Tick the correct answer in the following and justify your choice: If the perimeter and the area of a circle are numerically equal, then the radius of the circle is (A) 2 units (B) π units (C) 4 units (D) 7 units						1
14	Find the area of a sector of a circle with radius 6 cm if angle of the sector is 60°						1
15	A vessel is in the form of a hollow hemisphere mounted by a hollow cylinder. The diameter of the hemisphere is 14 cm and the total height of the vessel is 13 cm. Find the inner surface area of the vessel.					1	
16	(a) 572cm2 (b) 752 cm2 (c) none of above Class mark of a class in frequency distribution is (a) Upper limit + lower limit /2 (b) Upper limit – lower limit /2 (c) None of above					1	
17	The table below shows the daily expenditure on food of 25 households in a locality, Find the mean daily expenditure on food by a suitable method.						1
	Variable)x)	100 - 150	150 -200	200 - 250	250 -300	300 -350	
ı	Frequency (y)	4	5	12	2	2	

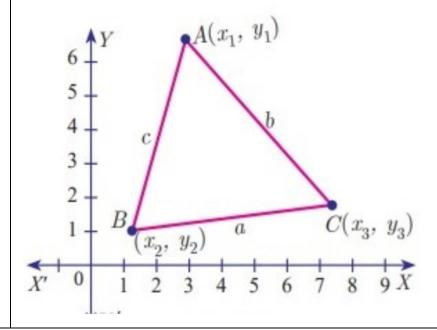
		1
	(a) 211 (b) 214 (c) 412 (d) 212	
18	(a) A bag contains lemon flavoured candies only. Malini takes out	
	one candy without looking into the bag. What is the probability	
	that she takes out (i) an orange flavoured candy? (ii) a lemon	
	flavoured candy?	
	(a) 1,0 (b) 0,1 (c) none of above	
	Direction for questions 19 & 20: In question numbers 19 and 20, a	
	statement of	
	Assertion (A) is followed by a statement of Reason (R). Choose the	
	correct option.	
19	Assertion: If HCF of 510 and 92 is 2, then the LCM of 510 & 92 is	1
	32460	
	Reason: as $HCF(a,b) \times LCM(a,b) = a \times b$	
	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the	
	correct explanation	
	of Assertion (A).	
	(b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the	
	correct explanation of Assertion (A).	
	(c) Assertion (A) is true but Reason (R) is false.	
	(d) Assertion (A) is false but Reason (R) is true.	
20	Assertion (A): The ratio in which the line segment joining (2, -3) and (5,	1
20	6) internally divided by x axis is 1:2.	1
	Reason (R): as formula for the internal division is	
	$(mx^2 + nx^2)/(m+n), (my^2 + ny^2)/(m+n)$	
	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the	
	correct explanation of Assertion (A).	
	(b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the	
	correct	
	explanation of Assertion (A).	
	(c) Assertion (A) is true but Reason (R) is false.	
	(d) Assertion (A) is false but Reason (R) is true.	
	Section B	
	Section B consists of 5 questions of 2 marks each.	
21	Two rails are represented by the equations $x + 2y - 4 = 0$ and $2x + 4y - 4 = 0$	2
22	12 = 0. Represent this situation geometrically	
22	Using basic proportionality Theorem, prove that a line drawn through	2
	the mid-point of one side of a triangle parallel to another side bisects the	
	third side	
	OR	
	The diagonals of a quadrilateral ABCD intersect each other at the point	
	O such that AO/BO=CO/DO, Show that ABCD is a trapezium.	
	a diagonal distribution of the control of the contr	
L	l	L

22	The length of a tangent from a point A at distance 5 are from the contract	2
23	The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle.	2
24		2
24	In \triangle PQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.	2
25		2
25	Two concentric circles are of radii 5 cm and 3 cm. Find the length of the	2
	chord of the larger circle which touches the smaller circle.	
	Section C	
26	Section C consists of 6 questions of 3 marks each.	2
26	Prove that $\sqrt{3}$ is an irrational number	3
27	Find the roots of the quadratic equation $3x^2 - 2\sqrt{6}x + 2 = 0$	3
28	The taxi charges in a city consist of a fixed charge together with the	3
	charge for the distance covered. For a distance of 10 km, the charge paid	
	is `205 and for a journey of 15 km, the charge paid is `255. What are	
	the fixed charges and the charge per km? How much does a person have	
	to pay for travelling a distance of 35 km?	
	OR	
	The sum of a two-digit number and the number obtained by reversing	
	the digits is 66. If the digits of the number differ by 2, find the number.	
	How many such numbers are there?	
20		2
29	The length of a tangent from a point A at distance 5 cm from the centre	3
20	of the circle is 4 cm. Find the radius of the circle.	2
30	$(1+\sin A)/(1-\sin A) = \sec A + \tan A \qquad OR$	3
	$\frac{1}{2} \cos A = \sin A + \frac{1}{2} \cos A + \sin A = \frac{1}{2} \cos A + \cot A$	
	$\cos A - \sin A + 1/\cos A + \sin A - 1 = \csc A + \cot A$	
31	(i) A lot of 25 bulbs contain 5 defective ones. One bulb is drawn at	3
31	random from the lot. What is the probability that this bulb is defective?	3
	(ii) Suppose the bulb drawn in	
	(i) is not defective and is not replaced. Now one bulb is drawn at	
	random from the rest. What is the probability that this bulb is not	
	defective?	
	Section D	
	Section D consists of 4 questions of 5 marks each.	
32	In a class test, the sum of Shefali's marks in Mathematics and English is	5
22	30. Had she got 2 marks more in Mathematics and 3 marks less in	
	English, the product of their marks would have been 210. Find her	
	marks in the two subjects.	
	OR	
	Sum of the areas of two squares is 468 m2. If the difference of their	
	perimeters is 24 m, find the sides of the two squares.	
33	State and prove basic proportionality theorem	5
33	Also find EC in triangle ABC where DE is parallel to BC and	
	AD=1.5cm,BD = 3cm,AE = 1cm	
	710-1.3cm, DD - 3cm , AL - 1cm	
		<u> </u>

	至了一个学生与关节的人性情情,但是没有	5 cm A	en						
34	A wooden article was made by scooping out a hemisphere from each end of a solid cylinder, as shown in fig If the height of the cylinder is 10 cm, and its base is of radius 3.5 cm, find the total surface area of the article. OR From a solid cylinder whose height is 2.4 cm and diameter 1.4 cm, a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid to the nearest cm ² .						5		
35	Thirty women were examined in a hospital by a doctor and the number of heartbeats per minute were recorded and summarised as follows. Find the mean ,mode and median of heart beats per minute for these women, choosing a suitable method. Number of 65-68 68-71 71-74 74-77 77-80 80-83 83-86 heart beats per minute Number of 2 4 3 8 7 4 2								5
	women	l	1	S	ection E	<u> </u>	<u> </u>	1	
		Case	study ba	ased ques			lsorv.		
	Case study -1		v	•		•	v		

During the summers of 2003 ,Manisha thought of starting some business of her own and lent some money from her father and started a tv manufacturing company. After some years ,she was known as one of the leading manufacturers in her area and kept expanding her limit year by year. Assuming that the production increases uniformly year by year,the number of TV sets produced by her in the third year was 600 units and in seventh year it was 700

Qno	question	marl
		S
1	What was the production in first year	1
2	What was the production in tenth year	1
3	What is the total production till seven years	2

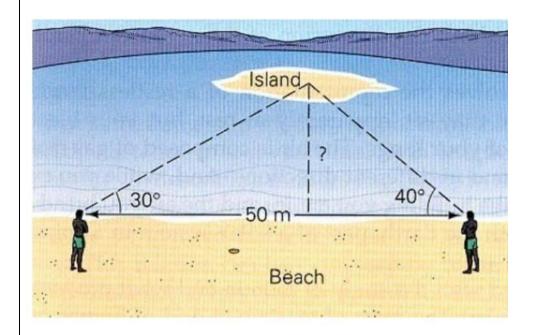

37 Case Study – 2

A piece of sandwich lies on the coordinate plane as shown in figure below

A,B and C point denotes the edges of the sandwich. Refer and answer the questions

Q1. Locate Point A

Q2. Find the point which is equidistant from A and B



Q3 Using distance formula find distance

Based on the above information answer the following questions using the c

	1
	1
	2

case study --3 38

Mohan and sohan went on a vacation to a seaside. They spotted an island at a certain distance from the sea shore .The two friends planned to standat a distance of 50m from each other such that the angle of elevation of mohan from island is 30^0 while that from sohan is 40^0 as shown in figure above. Use $\sqrt{3}$ =1.732

Based on the above information answer the following questions

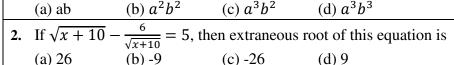
1	What is value of unknown angle of the triangle whose vertices	1
	are Mohan, Sohan and island?	
2	What is distance of the island from Mohan from the point	1
	where he is standing?	
3	What is the distance of the island from Sohan from the point	2

where he is standing? (take $\cos 40^{\circ}=0.766$	

KENDRIYA VIDYALAYA SANGATHAN, JAMMU REGION **SAMPLE PAPER SET-2**

CLASS-X SUBJECT- MATH (Std)

TIME: 3 HOURS M.M-80


GeneralInstructions:

- 1. ThisQuestionPaperhas5SectionsA-E.
- 2. SectionAhas 20MCQscarrying1markeach
- 3. SectionBhas 5questionscarrying02markseach.
- 4. SectionChas 6questionscarrying03markseach.
- 5. Section Dhas 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-partsofthe values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs
 - of 3 marks and 2 Questions of 2 marks has been provided. An internal choice hasbeen provided in the 2 marks questions of Section E
- 8. Drawneatfigureswhereverrequired. Take π =22/7whereverrequiredifnotstate d.

SECTION A

SectionAconsistsof20questionsof 1markeach.

1.	If two positive int	egers p and	q can be expre	essed as $p = ab^2$	and $q = ab^3$
	where a, b being p	rime numb	ers, then LCM	(p q) is equal to	
	(a) ab (b)	a^2h^2	$(c) a^3 h^2$	(d) a^3h^3	

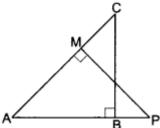
(a) 26 (b) -9 (c) -26 (d) 9 3. If α and β are the zeros of a polynomial $f(x) = x^2 - x - 4$, then the value of $\frac{1}{\alpha} + \frac{1}{\beta} - \alpha \beta$ is

(a) $\frac{15}{4}$ (b) $-\frac{15}{4}$ (c) 4 (d) 15 4. The pair of linear equations 2kx+5y=7, 6x-5y=11 has a unique solution, if (a) $k\neq -3$ (b) $k\neq \frac{2}{3}$ (c) $k\neq 5$ (d) $k\neq \frac{2}{9}$ 5. If b=3, then any integer can be expressed as a=

(a) 3q, 3q + 1, 3q + 2(b) 3q (c)none of these (d) 3q+1

6. Two poles of height 6 m and 11 m stand vertically upright on a plane ground. If the distance between their foot is 12 m, then distance between their tops is (a) 11m (d) 14m (b) 12m (c) 13m 7. If $\cos (\alpha + \beta) = 0$, then $\sin(\alpha - \beta)$ can be reduced to (c)sin α (b) $\cos 2\beta$ (a) $\cos \beta$ 8. If $\sin\theta - \cos\theta = 0$, then the value of $(\sin^4 \theta + \cos^4)$ is (a) 1 (b) $\frac{3}{4}$ (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ 9. In the given figure, P and Q are points on the sides AB and AC respectively of a triangle ABC. PQ is parallel to BC and divides the triangle ABC into 2 parts, equal in area. The ratio of PA:AB = (b) $(\sqrt{2}-1): \sqrt{2}$ (a) 1:1 (c) $1:\sqrt{2}$ (d) $(\sqrt{2}-1):1$ **10.** In the given figure, if ABCD is a trapezium in which $AB \parallel CD \parallel EF$, then (a) $\frac{2FC}{BF}$ (b) $\frac{2BF}{FC}$ (c) $\frac{FC}{BF}$ (d) $\frac{BF}{FC}$ 11. If the equation of a circle is $(4a-3)x^2 + ay^2 + 6x - 2y + 2 =$ 0, then its centre is (a) (3,-1)(b)(3,1)(c)(-3,-1)(d) None of these 12. Two concentric circles are of radii 10 cm and 6 cm, then the length of the chord of the larger circle which touches the smaller circle is: (a) 16 cm (b) 12 cm (c) 18 cm (d) 9 cm 13. A cylinder, a cone and a hemisphere are of equal base and have the same height. What is the ratio of their volumes? (a) 3:1:2 (b) 3:2:1 (c) 1:2:3 (d) 1:3:2 14. D and E are respectively the midpoints on the sides AB and AC of a triangle ABC and BC = 6 cm. If DE \parallel BC, then the length of DE (in cm) is (a) 2.5(b) 3(c) 5(d) 615. It is proposed to build a single circular park equal in area to the sum of areas of two circular parks of diameters 16 m and 12 m in a locality. The

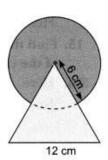
radius of the new park would be


	(a) 10 m	(b) 15 m	(c) 20 m	(d) 24 m						
16.				that three items should have						
		30 were wrong	read as 40, 20,	50 respectively. The correct						
	mean is	(b) 40	(a) 5 0	(4) 60						
15	(a) 48	(b) 49		(d) 60						
17.				sly then the probability of						
	getting no hea	ad is $\frac{1}{B}$, then (A)	$+B)^2$ is equal	to						
	(a) 1	(b) 4	(c) 5	(d) 25						
18.	If $0 < \theta < \frac{\pi}{4}$ the	en, the simples	$\frac{\text{(c) 5}}{\text{t form of }\sqrt{1-}}$	$2sin\theta cos\theta$ is						
	(a) $\sin\theta - \cos\theta$		(b) $\cos\theta - \sin\theta$	9						
	$(c)\cos\theta + \sin\theta$ $(d)\sin\theta\cos\theta$									
19.	9. Statement A (Assertion): If 5 divides k^2 then 5 also divides k, where k is a									
	positive integ			1 .6 1 .1 2 .1						
				imber, if p divides a ² , then p						
		ere a is a positi	•	and massam(D):a the same at						
		f assertion (A)	son(R) are true	and reason(R)is the correct						
			son(R) are true	and reason(R)is not the						
		nation of asserti		and reason(K) is not the						
	-	(A)istrue butrea								
		(A)isfalse butre								
20.	Statement A ((Assertion) : T	he value of y is	6, for which the distance						
	between the p	oints P(2,-3) ar	nd $Q(10, y)$ is 1	0.						
	StatementR()	Reason) : Dista	ance between tw	wo given points $A(x_1y_1)$ and						
	$B(x_2y_2)$ is given									
	$AB = \sqrt{(x_2 - x_2)^2}$	$(x_1)^2 + (y_2 - y_1)^2$	<u>)²</u>							
	(a) Bothassert	tion(A)andrease	on(R) aretruear	ndreason(R)isthe						
	-	ationofassertion								
		rtion(A) andrea								
				tionofassertion (A)						
	` '	(A)istrue butrea	, ,							
	(d) Assertion((A)isfalse butre	eason(R)istrue.							
			CECTION D							

SECTION B

Section B consists of 5 questions of 2 marks each.

- **21.** Find the values of 'a' and 'b' for which the following system of linear equations has infinite number of solutions. 2x + 3y = 7, (a + b + 1) x + (a + 2b + 2) y = 4 (a + b) + 1
- **22.** In given Fig., ABC and AMP are two right triangles right-angled at B and M respectively. Prove that:
 - (i) $\triangle ABC \sim \triangle AMP$



- 23. From an external point P, tangents PA and PB are drawn to a circle with centre O. If $\angle PAB = 50^{\circ}$, then find $\angle AOB$.
- **24.** The minute hand of a clock is 10 cm long. Find the area of the face of the clock described by the minute hand between 9 AM and 9.35 AM.

OR

Find the area of the shaded region in Fig, where a circular arc of radius 6 cm has been drawn with vertex 0 of an equilateral triangle OAB of side 12 cm as centre.

25. If $\sin \theta = \frac{12}{13}$, $0^{\circ} < \theta < 90^{\circ}$, find the value of: $\frac{\sin^2 \theta - \cos^2 \theta}{2\sin \theta . \cos \theta} \times \frac{1}{\tan^2 \theta}$

If $\tan \theta = \frac{12}{5}$, find the value $\frac{1+\sin \theta}{1-\sin \theta}$.

SECTION C

Section C consists of 6 questions of 3 marks each.

- **26.** Prove that $2+5\sqrt{3}$ is an irrational number, given that $\sqrt{3}$ is an irrational number.
- 27. If α and β are the zeroes of a quadratic polynomial such that $\alpha + \beta = 24$ and $\alpha \beta = 8$. Find the quadratic polynomial having α and β as its zeroes.
- 28. A train covered a certain distance at a uniform speed. If the train would have been 10 km/hr scheduled time. And, if the train were slower by 10 km/hr, it would have taken 3 hr more than the scheduled time. Find the distance covered by the train.

OR

In an election contested between A and B, A obtained votes equal to twice

the no. of persons on the electoral roll who did not cast their votes and this later number was equal to twice his majority over B. If there were 1,8000 persons on the electoral roll. How many votes for B

- **29.** Prove that $\frac{\sin\theta 2\sin^3\theta}{2\cos^3\theta \cos\theta} = \tan\theta$
- **30.** Prove that the tangent at any point of a circle is perpendicular to the radius through the point of contact.

OR

In two concentric circles, prove that all chords of the outer circle which touch the inner arc of equal length.

- 31. Three different coins are tossed together. Find the probability of getting
 - (i) exactly two heads
 - (ii) at least two heads
 - (iii) at least two tails

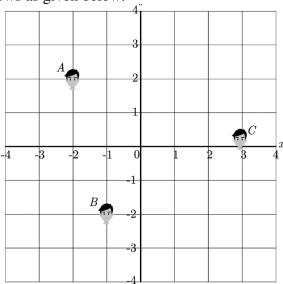
SECTION D

Section D consists of 4 questions of 5 marks each.

- **32.** A cyclist, after riding a certain distance, stopped for half an hour to repair his bicycle, after which he completes the whole journey of 30 km at half speed in 5 hours. If the breakdown had occurred 10 km farther off, he would have done the whole journey in 4 hours. Find where the breakdown occurred and his original speed.
- **33.** Prove that three times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares of the medians of the triangle.
- **34.** A milk tanker cylindrical in shape having diameter 2 m and length 4.2 m supplies milk to the two booths in the ratio of 3:2. One of the milk booths has cuboidal vessel having base area 3.96 sq. m. and the other has a cylindrical vessel having radius 1 m. Find the level of milk in each of the vessels. Use $\pi = \frac{22}{7}$.

OR

A hemispherical tank, of diameter 3 m, is full of water. It is being emptied by a pipe at the rate of $3\frac{4}{7}$ litre per second. How much time will it take to make the tank half empty? Use $\pi = \frac{22}{7}$.


35. If the mean of the following frequency distribution is 91, and sum of frequency is 150, find the missing frequency x and y:

Class	0- 30	30- 60	60- 90	90- 120	120- 150	150- 180
Frequency	12	21	x	52	y	11

SECTION E

Case study based questions are compulsory.

36. Morning assembly is an integral part of the school's schedule. Almost all the schools conduct morning assemblies which include prayers, information of latest happenings, inspiring thoughts, speech, national anthem, etc. A good school is always particular about their morning assembly schedule. Morning assembly is important for a child's development. It is essential to understand that morning assembly is not just about standing in long queues and singing prayers or national anthem, but it's something beyond just prayers. All the activities carried out in morning assembly by the school staff and students have a great influence in every point of life. The positive effects of attending school assemblies can be felt throughout life. Have you noticed that in school assembly you always stand in row and column and this make a coordinate system. Suppose a school have 100 students and they all assemble in prayer in 10 rows as given below.

- (i) What are the coordinates of point A?
- (ii) What is the distance of point A from origin?
- (iii) What is the distance between A and B?
- (iv) What is the distance between B and C?

OR

- (v) A point D lies on the line segment between points A and B such that AD:DB = 4:3. What are the the coordinates of point D?
- 37. Road Roller: A road roller (sometimes called a rollercompactor, or just roller) is a compactor-type engineering vehicle used to compact soil, gravel, concrete, or asphalt in the construction of roads and foundations. Similar rollers are used also at landfills or in agriculture. Road rollers are frequently referred to as steamrollers, regardless of their method of propulsion.

RCB Machine Pvt Ltd started making road roller 10 year ago. Company increased its production uniformly by fixed number every year. The company produces 800 roller in the 6th year and 1130 roller in the 9th year.

- (i) What was the company's production in first year?
- (ii) What was the company's production in the 8th year?
- (iii) What was the company's total production of the first 6 years?
- (iv) What was the increase in the company's production every year?

OR

- (v) In which year the company's production was 1350 rollers?
- **38.** An air-to-surface missile (ASM) or air-to-ground missile (AGM or ATGM) is a missile designed to be launched from military aircraft and strike ground targets on land, at sea, or both. They are similar to guided glide bombs but to be deemed a missile

A military fighter plane is flying at an altitude of 600 metres with the speed of 200 km/h. The pilot spots enemy tanks at point R on ground. After getting the permission from command centre to hit the target at R, pilot fires a missile. Fighter plane was at point A at the time of fire of missile. Missile moves to target at enemy tanks stationed at R at an angle of 45° at a speed of 300 km/h.

- (i) What is the horizontal distance between fighter plane at A and tank at R?
- (ii) How much time will missile take to hit the target R?
- (iii) Another enemy tank at point S on ground moving with a speed of 90 km/h in straight line away from plane. Pilot fires another missile at an angle of 60° from its flight path position B at the instant when enemy's tank was at S and it hits this enemy tank at point T. How much time is taken by second missile to hit the enemy tank at point T?
- (iv) What is the horizontal distance between fighter plane at B and tank at T?

OR

(v) What is the distance of point T from S ?

SAMPLE PAPER SET- 3

CLASS - X

SUBJECT- MATHS (STD)

TIME – 3 HOURS

M.M-80 MARKS

Read the instructions carefully:

- 1. This Question Paper has 5 Sections A, B, C, D, and E.
- 2. Section A has 20 Multiple Choice Questions (MCQs) carrying 1 mark each.
- 3. Section B has 5 Short Answer-I (SA-I) type questions carrying 2 marks each.
- 4. Section C has 6 Short Answer-II (SA-II) type questions carrying 3 marks each.
- 5. Section D has 4 Long Answer (LA) type questions carrying 5 marks each.
- 6. Section E has 3 Case Based integrated units of assessment (4 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 2 marks, 2 Qs of 3 marks and
- 2 Questions of 5 marks has been provided.

			SECTION	-A			_				
Q1.	The mode and mean is given by 7 and 8, respectively. Then the median is: (a) 1/13 (b) 13/3 (c) 23/3 (d) 33										
Q2.	Consider the follow	ing frequer	ıcy distribu	tion of the	heights of 6	60 students	of a class:				
	Height (in cm)	150 – 155	155 – 160	160 – 165	165 – 170	170 – 175	175 – 180				
	Number of students	15	13	10	8	9	5				
	The sum of the lower limit of the modal class and upper limit of the median class is (a) 310 (b) 315 (c) 320 (c) 330										
Q3.	Which of the following is not irrational? (a) $(3 + \sqrt{7})$ (b) $(3 - \sqrt{7})$ (c) $(3 + \sqrt{7})(3 - \sqrt{7})$ (d) $3\sqrt{7}$										
Q4.	The probability of a (a) $0 \le P(E) \le 1$	n event is a	ılways								

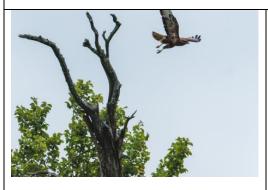
	(b) $0 \le P(E) \ge 1$ (c) $0 < P(E) < 1$ (d) none of these
Q5.	If the HCF of 65 and 117 is expressible in the form 65m – 117, then the value of m is (a) 4 (b) 2 (c) 1 (d) 3
Q6.	A cylindrical pencil sharpened at one edge is the combination of (a) a cone and a cylinder (b) two cylinders (c) a hemisphere and a cylinder (d) none of these
Q7.	The largest number that divides 70 and 125, which leaves the remainders 5 and 8, is: (a) 65 (b) 15 (c) 13 (d) 25
Q8.	The area of a quadrant of a circle with circumference of 22 cm is (a) 77 cm ² (b) 77/8 cm ² (b) 35.5 cm ² (c) 77/2 cm ²
Q9.	AB is a chord of the circle and AOC is its diameter such that angle ACB = 50°. If AT is the tangent to the circle at the point A, then BAT is equal to (a) 65° (b) 60° (c) 50° (d) 40°
Q10.	In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre. The length of

	the arc is;	
	(a) 20cm	
	(b) 21cm	
	(c) 22cm	
	(d) 25cm	
Q11.	A quadratic polynomial, whose zeroes are –3 and 4, is	
	(a) $x^2 - x + 12$	
	(b) $x^2 + x + 12$	
	$(c)(x^2/2)-(x/2)-6$	
	$(d) 2x^2 + 2x - 24$	
Q12.	If the angle between two radii of a circle is 110°, then the angle between the tangents	
	at the ends of the radii is:	
	(a) 90°	
	(b) 50°	
	(c) 70°	
	(c) 40°	
Q13.	If one equation of a pair of dependent linear equations is -3x+5y-2=0. The second	
	equation will be:	
	(a) -6x + 10y - 4 = 0	
	(b) $6x-10y-4=0$	
	(c) $6x+10y-4=0$	
	(d) -6x + 10y + 4 = 0	
Q14.	In the given figure $\triangle ABC \sim \triangle PQR$. The value of x is	
	To delitement of the biology CV made in the State of the	
	(-) 25	
	(a) 2.5 cm	
	(b) 3.5 cm	
	(c) 2.75 cm	
015	(d) 3 cm	
Q15.	If $\cos X = \frac{2}{3}$ then $\tan X$ is equal to:	
	(a) 5/2	
	(b) $\sqrt{(5/2)}$	
	(c) $\sqrt{5/2}$	
	(d) $2/\sqrt{5}$	

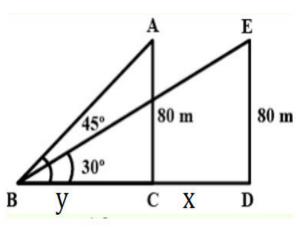
Q16.	The quadratic equation $x^2 + 7x - 60$ has	
	(a) two equal roots	
	(b) two real and unequal roots	
	(b) no real roots	
	(c) two equal complex roots	
Q17.	The midpoint of a line segment joining two points A(2, 4) and B(-2, -4) is	
	(a) (-2, 4)	
	(b) (2, -4)	
	(c)(0,0)	
	(a) (2, 1) (b) (2, -4) (c) (0, 0) (d) (-2, -4)	
Q18.	$(\sin 30^{\circ} + \cos 60^{\circ}) - (\sin 60^{\circ} + \cos 30^{\circ})$ is equal to:	
	(a) 0	
	(b) $1+2\sqrt{3}$ (c) $1-\sqrt{3}$	
	(c) $1-\sqrt{3}$	
	(d) $1+\sqrt{3}$	
	Assertion & Reasoning (Q19 and 20)	
	DIRECTION: In the following questions, a statement of assertion (A) is followed by a	
	statement of reason (R). Mark the correct choice as:	
	(a)Both assertion (A) and reason (R) are true and reason (R) is the correct explanation	
	of assertion (A). (b)Both assertion (A) and reason (R) are true but reason (R) is not the	
	correct explanation of assertion (A). (c)Assertion (A) is true but reason (R) is false.	
	(d)Assertion (A) is false but reason (R) is true	
Q19.	Assertion: The point which divides the line joining the points $A(1, 2)$ and $B(-1, 1)$ internally	
	in the ratio 1: 2 is (-1 2, 5 3)	
	Reason: The coordinates of the point $P(x, y)$ which divides the line segment joining the points	
	$A(x_1, y_1)$ and $B(x_2, y_2)$ in the ratio $m : n$ is $\left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}\right)$	
Q20.	Assertion: In a right $\triangle ABC$, right-angled at B, if $\tan A = \frac{12}{5}$, then $\sec A = \frac{13}{5}$.	
	Reason :CotA is the product of Cot and A.	
	Reason .CotA is the product of Cot and A.	
	SECTION –B	
Q21.	Find the value(s) of k so that the pair of equations $3x - y - 5 = 0$ and	
	6x - 2y - p = 0 are parallel.	
	OR	
	Find the values of x and y in the following rectangle:	

	х+3у
	3х+у 7
022	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Q22. Q23.	If $2 \sin^2 A - \cos^2 A = 2$, then fin the value of A. Prove that the tangents drawn to a circle from an external point are equal.
Q24.	Find the value of x for which AB PQ in given figure. P 3x+19 A R
Q25.	A cow is tied with a rope of length 14 m at the corner of a rectangular field of dimensions 20m x 16 m. Find the area of the field in which the cow cannot graze. OR
	Find the area of the minor segment of a circle of radius 21 cm, when the angle of the
	corresponding sector is 60° .(Use $\sqrt{3}$ =1.73) SECTION –C
Q26.	Prove that $5 + 2\sqrt{3}$ is irrational.
Q27.	Find the roots of the following equations: $\frac{1}{2x-3} + \frac{1}{x-5} = 1 \text{ ,x is not equal to } 3/2 \text{ , } 5$
Q28.	If a card is drawn from a well shuffled deck of 52 cards, Find the probability of getting: (a) an Ace of red colour (b) a 10 of club (c) a face card of spade. OR

	The probability of selecting a blue marble at random from a jar that contains only blue, black and green marbles is 1/5. The probability of selecting a black marble at random from the same jar is 1/4. If the jar contains 11 green marbles, find the total number of marbles in the jar.										
Q29.	Find the zeroes of the following polynomials by factorisation method and verify the										
	relations between the zeroes and the coefficients of the polynomials:										
	$3x^2-x-4$										
	OR										
	If a and b are zeroes of the quadratic polynomial $x^2 - 6x + a$. Find the value of 'a' if 3α										
	$+2\beta = 20$.										
Q30	If $x = p \sec \theta$	+ q tan θ and y	$= p \tan \theta + q$	sec θ, then prov	ve that $x^2 - y^2 =$	$= p^2 - q^2$.					
Q31.		from an extern									
	_	and radius r. If	_	_							
		T									
			1								
		/ 0	1								
		04		P							
		-	1/								
			//								
		Y									
		S									
			G = G = T = T = T = T = T = T = T = T =								
022	C4-4 1	Th-1 41	SECTION -	- D							
Q32.		ve Thales theor		14::	-4 41 C						
Q33.		the following fr									
		and 60-80, resp		ot known. Find	a tnese frequen	cies, ii the					
		frequencies is 0-20	20-40	40-60	60-80	80-100					
	CI f	17		32		19					
		1/	f_1	32	f_2	19					
				OR							
	The medien of	f the fellowing	data is 50 Ei		franda iftha	aum of all the					
	frequencies is	-	uata is 50. Fii	id the values of	i p and q, ii the	e sum of all the					
	frequencies is	CI	F								
		20-30	P 15								
		30-40	15								
		40-50	25								
I		70 CO	~ ^			l l					
		50-60 60-70	20 Q								


	70-80	8							
	80-90	10							
Q34.	In a flight of 600 km, an aircraft was								
	the trip was reduced by 200 km/hr at	nd the time of flight increased t	by 30 minutes. Find						
	the original duration of the flight.								
Q35.	An ice-cream cone full of ice-cream having radius 5 cm and height 10 cm as shown in figure .Calculate the volume of ice-cream, provided that its 1/6 part is left unfilled								
		cream, provided that its 1/6 part	is left unfilled						
	with ice-cream								
	5 cm								
	WWW.nnuxxx								
	V00000000000V								

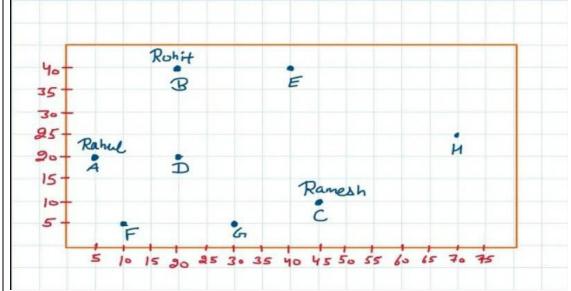
	10 cm								
	V:::::::9								
	W00009								
	VW/								
	WA 1								
	V +								
	OR								
	A rocket is in the form of a right circular cylinder closed at the lower end and								
	surmounted by a cone with the same radius as that of the cylinder. The diameter and								
	height of the cylinder are 6 cm and 12 cm, respectively. If the slant height of the conical portion is 5 cm, then find the total surface area of the rocket, (use $\pi = 3.14$)								
	contear portion is 5 cm, then find the	total surface area of the focker	n, (use $n = 3.14$)						
	SF	CCTION – E							
									
Q36.	POLLUTION-A MAJOR PROBLE	M: One of the major problem the	nat the world is						
	facing today is the environmental po	ollution. Common types of poll	ution include						
	light, noise, water and air pollution.								
	1								



In a school, students thoughts of planting trees in and around the school to reduce pollution. it was decided that the number of trees that each section of each class will plant be the double of the class in which they are studying, e.g. a section of class I will plant 2 trees, a section of class II will plant 4 trees and so on a section of class XII will plant 24 trees.

- (a) If there are two sections of each class ,how many trees will be planted by class VII students.
- (b) Find the AP formed, if there are three sections of each class.
- (c)Find the total number of plants planted by students ,if each class is having only one section.

Q37. A School trip was organized to a bird sanctuary, a boy observed the following situation.



A bird is sitting on the top of a tree, which is 80 m high. The angle of elevation of the bird, from a point on the ground is 45° . The bird flies away from the point of observation horizontally and remains at a constant height. After 5 seconds, the angle of elevation of the bird from the point of observation becomes 30° , (Take $\sqrt{3}$ =1.73).

- (a) Find the value of x+y.
- (b) Find the value of x.
- (c)Find the speed of the bird, when it flies from point C to D
- Q38. Football is the most popular game in the world. It combines strength, speed, and skills. Football is the most-watched and most played sport on the earth. In Canada and America, it is called Soccer. Football was invented in China nearly 476 BC. It is a 90 minutes long game and those 90 minutes are distributed in two 45 minutes halves.

Three friends Rohit, Rahul, and Ramesh decide to play Football in a playground of the School. The position of Rohit, Rahul, and Ramesh is shown in the diagram.

- (a) What is the Co-ordinate of Ramesh's position on the field?
- (b) The distance between Rahul and Ramesh position is:
- (c)If Rahul takes Football to position E and Rohit comes at position G then find the distance between them

L	

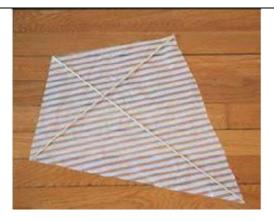
SAMPLE PAPER SET-4

CLASS-X SUBJECT- MATH (Std)

TIME: 3 HOURS M.M- 80

Maximum Marks: 80 General Instructions:

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section **B** has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section **D** has 4 questions carrying 05 marks each.
- 6. Section **E** has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.


	SECTION A	
S.No.	Section A consist of 20 questions of 1 mark each.	Marks
1	If HCF $(a, b) = 12$ and $a \times b = 1800$ then LCM (a, b) is	1
	(a) 3600	
	(b) 900	
	(c) 150	
	(d) 90	
2	The pair of equations $3x - 5y = 7$ and $-6x + 10y = 7$ have	1
	(a) a unique solution	
	(b) infinitely many solutions	
	(c) no solution	
3	(d) two solutions The mid-point of the line segment joining the points A $(-2, 8)$ and B $(-6, -4)$ is	1
3	The mid-point of the fine segment joining the points $A(-2, 8)$ and $B(-6, -4)$ is $(A)(-4, -6)$	1
	(A) (-4, -6) (B) (2, 6)	
	(C)(-4,2)	
	(D)(4,2)	
4	The points A (9, 0), B (9, 6), C (–9, 6) and D (–9, 0) are the vertices of a	1
	(A) Square	
	(B) Rectangle	
	(C) Rhombus	
	(D) Trapezium	
5	Given 15 Cot A = 8, then Sin A =	1
	(a) $\frac{3}{5}$ (b) $\frac{4}{3}$ (c) 1 (d) None of these	
6	If $\triangle ABC$ is right angled at B, then the value of Tan A= 1, then the value of 2	1
	sinACosA =	
	(a) 0 (b) 1 (c) $\frac{1}{2}$ (d) Not defined	
	2 (a) 100 defined	
	Sin A = cos A is true when A =	
7	(a) 0^0 (b) 30^0 (c) 45^0 (d)None of the above	
8	If TP and TQ are tangents to the circle with centre O and $\angle POQ = 100^{\circ}$, then what	1
0	will be the value of $\angle PTQ$.	*
	will be the value of Z1 1 V.	<u> </u>

	T 100° Q							
	(a) 60^{0} (b) 70^{0} (c) 80^{0} (d) 90^{0}							
9	The common point of the tangent and the circle is called (a) Centre of the circle (b) Circumference (c) Point of contact (d) None of the above	1						
10	If ΔABC ~ ΔRPQ, AB = 3cm, BC = 5cm, AC = 6cm, RP = 6cm and PQ = 10cm, then what is value of QR. (a) 11cm (b) 12cm (c) 15cm (d) None of these	1						
11	Find a relation between x and y such that the point (x, y) is equidistant from the point (3,6) and (-3, 4).	1						
12	Ramu is 6 feet tall. At an instant his shadow is 5 feet long. At the same instant the shadow of a pole is 30feet long. How tall is the pole. (a) 12 feet (b) 24 feet (c) 30feet (d) 36 feet	1						
13	The area of the circle that can be inscribed in a square of side 6cm is: (a) $36\pi\text{cm}^2$ (b) $18\pi\text{cm}^2$ (c) $12\pi\text{cm}^2$ (d) $9\pi\text{cm}^2$	1						
13	If the area of a semi-circular field is 15400m^2 , then perimeter of the field is: (a) $160 \sqrt{2}\text{m}$ (b) $260 \sqrt{2}\text{m}$ (c) $360 \sqrt{2}\text{m}$ (d) $460 \sqrt{2}\text{m}$.	1						
14	The curved surface area of a right circular cone is 12320 cm sq. If its radius is 56 cm, find its slant height a) 35 cm b) 70 cm c) 55 cm d) 35/2 cm	1						
15	Find mode using empirical formula when mean and median are 10.5 and 9.6 resp. a) 6.2 b) 7.2 c) 7.8 d) 6.8	1						
16	If the discriminant of a quadratic equationis less than zero,then it has (a) Equal roots (b) real roots (c) No real roots (d) can't be determined	1						
17	A bag contains 8 red, 2 black and 5 white balls. One ball is drawn at random. The probability that the ball drawn is not white is (a) 1/2 (b) 2/3 (c) 1/4 (d) 2/5	1						
18	If α and β are the zeroes of the polynomial px^2 -2x +3p and $\alpha + \beta = \alpha\beta$ then the value of p is (a) $\frac{-2}{3}$	1						

	\perp $\alpha > -2$								
	(b) $\frac{2}{3}$ (c) $\frac{1}{3}$ (d) $\frac{-1}{3}$								
	$(c) \frac{1}{3}$								
	$\left \begin{array}{cc} (d) & \frac{-1}{2} \end{array} \right $								
	Each of the following questions contains an assertion followed by Reason.Read them	1							
	and answer the questions on the basis of options:								
	(a) If both assertion and reason is correct and reason is the correct explanation of								
	assertion.								
	(b) If both assertion and reason is correct but reason is not the correct explanation of								
	assertion.								
	(c) If assertion is correct but reason is not correct.								
	(d) If assertion is not correct but reason is correct.								
19	Assertion: The favourable outcomes to the event of getting an even number when a die is	1							
	thrownare 2,4 and 6								
	Reason: The outcomes which ensure the occurrence of an event are called favourable								
	outcomes to theevent.								
20	. Assertion: The probability of selecting a number from the numbers 1 to 30 is 1.	1							
	Reason: For any event E, if $P(E) = 1$, then E is called an impossible event.								
	Section B								
21	α, β are the zeroes of the polynomial $2x^2 - 8x + 5$, find the value of $(\alpha + \frac{1}{\beta})(\beta + \frac{1}{\alpha})$.	2							
	$\frac{\beta}{\beta}$ OR								
	If the sum of the zeros of the quadratic polynomial $kv^2 + 2v - 3k$ is equal to twice their								
	If the sum of the zeros of the quadratic polynomial $ky^2 + 2y - 3k$ is equal to twice their product, find k.								
	If the sum of the zeros of the quadratic polynomial $ky^2 + 2y - 3k$ is equal to twice their product, find k.								
22	product, find k. Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum	2							
22	product, find k. Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of	2							
22	product, find k. Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum	2							
22	product, find k. Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times.	2							
	product, find k. Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times. If the area of a sector of a circle is $\frac{5}{18}$ th of the area of that circle, then find the central								
	product, find k. Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times.								
	product, find k. Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times. If the area of a sector of a circle is $\frac{5}{18}$ th of the area of that circle, then find the central angle of the sector. OR								
	product, find k. Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times. If the area of a sector of a circle is $\frac{5}{18}$ th of the area of that circle, then find the central angle of the sector.								
	product, find k. Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times. If the area of a sector of a circle is $\frac{5}{18}$ th of the area of that circle, then find the central angle of the sector. OR From a solid cube of side 7cm, a conical cavity of height 7 cm and radius 3 cm is								
	product, find k. Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times. If the area of a sector of a circle is $\frac{5}{18}$ th of the area of that circle, then find the central angle of the sector. OR From a solid cube of side 7cm, a conical cavity of height 7 cm and radius 3 cm is								
	product, find k. Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times. If the area of a sector of a circle is $\frac{5}{18}$ th of the area of that circle, then find the central angle of the sector. OR From a solid cube of side 7cm, a conical cavity of height 7 cm and radius 3 cm is								
23	Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times. If the area of a sector of a circle is $\frac{5}{18}$ th of the area of that circle, then find the central angle of the sector. OR From a solid cube of side 7cm, a conical cavity of height 7 cm and radius 3 cm is hollowed out. Find the volume of the remaining solid. The mode of the following data is 36. Find x Class O-10 10-20 20-30 30-40 40-50 50-60 60-70	2							
23	Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times. If the area of a sector of a circle is $\frac{5}{18}$ th of the area of that circle, then find the central angle of the sector. OR From a solid cube of side 7cm, a conical cavity of height 7 cm and radius 3 cm is hollowed out. Find the volume of the remaining solid. The mode of the following data is 36. Find x	2							
23	Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times. If the area of a sector of a circle is $\frac{5}{18}$ th of the area of that circle, then find the central angle of the sector. OR From a solid cube of side 7cm, a conical cavity of height 7 cm and radius 3 cm is hollowed out. Find the volume of the remaining solid. The mode of the following data is 36. Find x Class 0-10 10-20 20-30 30-40 40-50 50-60 60-70 Frequency 8 10 x 16 12 6 7	2							
23	Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times. If the area of a sector of a circle is $\frac{5}{18}$ th of the area of that circle, then find the central angle of the sector. OR From a solid cube of side 7cm, a conical cavity of height 7 cm and radius 3 cm is hollowed out. Find the volume of the remaining solid. The mode of the following data is 36. Find x Class 0-10 10-20 20-30 30-40 40-50 50-60 60-70 Frequency 8 10 x 16 12 6 7 A bag contains 5 Red balls and some blue balls. If the probability of drawing a blue	2							
23	Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times. If the area of a sector of a circle is $\frac{5}{18}$ th of the area of that circle, then find the central angle of the sector. OR From a solid cube of side 7cm, a conical cavity of height 7 cm and radius 3 cm is hollowed out. Find the volume of the remaining solid. The mode of the following data is 36. Find x Class 0-10 10-20 20-30 30-40 40-50 50-60 60-70 Frequency 8 10 x 16 12 6 7	2							
23	product, find k. Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times. If the area of a sector of a circle is $\frac{5}{18}$ th of the area of that circle, then find the central angle of the sector. OR From a solid cube of side 7cm, a conical cavity of height 7 cm and radius 3 cm is hollowed out. Find the volume of the remaining solid. The mode of the following data is 36. Find x Class 0-10 10-20 20-30 30-40 40-50 50-60 60-70 Frequency 8 10 x 16 12 6 7 A bag contains 5 Red balls and some blue balls. If the probability of drawing a blue ball is double that of a Red ball, determine the number of blue balls in the bag?	2							
23	Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times. If the area of a sector of a circle is $\frac{5}{18}$ th of the area of that circle, then find the central angle of the sector. OR From a solid cube of side 7cm, a conical cavity of height 7 cm and radius 3 cm is hollowed out. Find the volume of the remaining solid. The mode of the following data is 36. Find x Class 0-10 10-20 20-30 30-40 40-50 50-60 60-70 Frequency 8 10 x 16 12 6 7 A bag contains 5 Red balls and some blue balls. If the probability of drawing a blue ball is double that of a Red ball, determine the number of blue balls in the bag? SECTION C Section C consists of 6 questions of 3 marks each. Solve the following pair of linear equations by using substitution method.	2							
23 24 25	product, find k. Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times. If the area of a sector of a circle is $\frac{5}{18}$ th of the area of that circle, then find the central angle of the sector. OR From a solid cube of side 7cm, a conical cavity of height 7 cm and radius 3 cm is hollowed out. Find the volume of the remaining solid. The mode of the following data is 36. Find x Class 0-10 10-20 20-30 30-40 40-50 50-60 60-70 Frequency 8 10 x 16 12 6 7 A bag contains 5 Red balls and some blue balls. If the probability of drawing a blue ball is double that of a Red ball, determine the number of blue balls in the bag? SECTION C Section C consists of 6 questions of 3 marks each. Solve the following pair of linear equations by using substitution method. 32 x + 53 y = 7	2 2 2							
23 24 25	Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times. If the area of a sector of a circle is $\frac{5}{18}$ th of the area of that circle, then find the central angle of the sector. OR From a solid cube of side 7cm, a conical cavity of height 7 cm and radius 3 cm is hollowed out. Find the volume of the remaining solid. The mode of the following data is 36. Find x Class 0-10 10-20 20-30 30-40 40-50 50-60 60-70 Frequency 8 10 x 16 12 6 7 A bag contains 5 Red balls and some blue balls. If the probability of drawing a blue ball is double that of a Red ball, determine the number of blue balls in the bag? SECTION C Section C consists of 6 questions of 3 marks each. Solve the following pair of linear equations by using substitution method.	2 2 2							
23 24 25	product, find k. Two tankers contain 850 litres and 680 litres of petrol respectively. Find the maximum capacity of a container which can measure the petrol of either tanker in exact number of times. If the area of a sector of a circle is $\frac{5}{18}$ th of the area of that circle, then find the central angle of the sector. OR From a solid cube of side 7cm, a conical cavity of height 7 cm and radius 3 cm is hollowed out. Find the volume of the remaining solid. The mode of the following data is 36. Find x Class 0-10 10-20 20-30 30-40 40-50 50-60 60-70 Frequency 8 10 x 16 12 6 7 A bag contains 5 Red balls and some blue balls. If the probability of drawing a blue ball is double that of a Red ball, determine the number of blue balls in the bag? SECTION C Section C consists of 6 questions of 3 marks each. Solve the following pair of linear equations by using substitution method. 32 x + 53 y = 7	2 2 2							

28	A quadril AB + CD			rawn to	circumscri	bing a circ	ele (figure	given). l	Prove that	3
	OR C									
	In given figure, there are two concentric circles of radii 6 cm and 4 cm with centre O. If AP is a tangent to the larger circle and BP to the smaller circle and length of AP is 8cm, find the length of BP.									
29	The media	an of the	followin	g distrib	ution is 32	.5. Find the	e values of	F1and F	F2.	3
	Class	0-10	10-20	20-30	30-40	40-50	50-60	60-70	Total	
	Freque	F1	5	9	12	F2	30-00	2	40	_
	ncy							_		
30	Show that $(\sqrt{.})$	$3+\sqrt{5})^2$ is	s an irrati	ional nun	nber					3
31	If α and β are	e the zero		polynon	nial x ² -6x+	-k and 3α+	2β=20, fin	d the val	lue of k.	3
	Quad polynor	mial 2x²-	0r 3x+1 has	z zeroes a	is a and R	Now for	m a duad	nolynom	nial	
	whose zeroes			. 201005 0	a a ana p	. 110W 101	m a quad.	Polymon		
					SECTION					
	Section D co	nsists of	4 questi	ons of 5	marks eac	h.				
32	A motor boat whose speed is 24 km/h in still water takes 1 hour more to go 32 km upstream than to return downstream to the same spot. Find the speed of the stream. OR								5	
	A train trave would have to			-		-			ore, it	
33	From a solid								avity of	5
	same height a of the remain	and same	diameter	_					-	
34	If CosA+	$SinA = \sqrt{2}$		how that	Cos A-Si	$A = \sqrt{2}Sin$	Α			5

	sides in distinct points. The other two sides are divided in the same ratio OR In the given figure, P is the mid-point of BC and Q is the midpoint of AP. If BQ when	
	produced meet AC at R, Prove that $RA = \frac{1}{3}CA$	
	SECTION E	
	Case study-based questions are compulsory. Each question carries 4 marks	
36	Your friend Veer wants to participate in a 200m race. He can currently run that distance in 51 seconds and with each day of practice it takes him 2 seconds less. He wants to do in 31 seconds.	
	What will be the AP for given situation?	
	2. What is the minimum number of days he needs to practice till his goal is Achieved?	1
	3. Which of the following term is not in the AP of the above given situation. OR	1
	If nth term of an AP is given by $a_n = 2n + 3$ then common difference of an AP is	2
37	. Rahul is studying in X Standard. He is making a kite to fly it on a Sunday. Few questions came to his mind while making the kite. Give answers to his questions by looking at the figure.	2
		4

- I. Rahul tied the sticks at what angles to each other?
- II. What is the area of the kite, formed by two perpendicular sticks of length 6 cm and 8 cm?
- III. Which is the correct similarity criteria applicable for smaller triangles at the upper part of this kite?

OR

Which is the correct similarity criteria applicable for smaller triangles at the lower part of this kite?

Consider a telecom tower BC fixed on top of a building AB. The distance between the base of the building and point P on the ground is 48 m. From the point P the angle of elevation of the top of a building B is 30^{0} and the angle of elevation of the top of the tower C is 60^{0} .

- A) The height of the building AB is:
- B) Height of the telecom tower BC is
- The angle of depression from the top of the tower to the point P is

OR

The angle of depression from the top of the building to the point P is

1 1 2

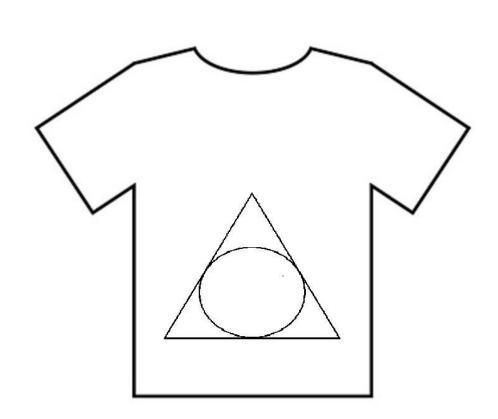
SAMPLE PAPER SET-5

CLASS-X SUBJECT- MATH (Std)

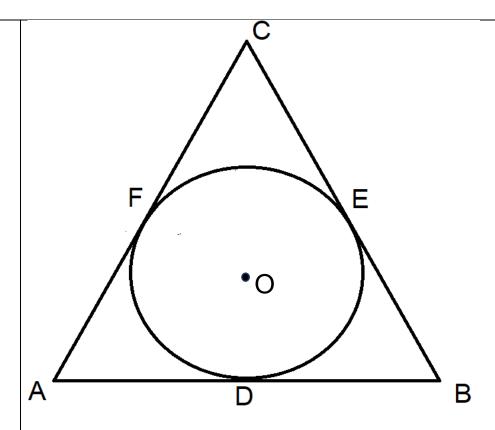
TIME: 3 HOURS M.M- 80

General Instructions:

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section **B** has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section **D** has 4 questions carrying 05 marks each.
- 6. Section **E** has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.


	Section A	
S.No	Section A consists of 20 questions of 1 mark each	Marks
1	The product of LCM and HCF of 510 and 92 is (a)49460 (b) 46920 (c)32440 (d)28480	1
2	The Zeroes of $6x^2 - 3 - 7x$ are $(a)\frac{1}{3}, \frac{2}{3} (b)\frac{3}{7}, \frac{1}{7} \qquad (c)\frac{-1}{3}, \frac{3}{2} (d)\frac{-2}{3}, \frac{1}{3}$ If x=a and y=b is solution of equations x-y=2 and x+y=4, then values of a and bare,	1
3	If x=a and y=b is solution of equations x-y=2 and x+y=4, then values of a and bare, respectively (a) 3 and 5 (b) 5 and 3 (c) 3 and 1 (d) -1 and -1	1
4	If a and b can take values 1, 2, 3, 4. Then the number of the equations of the form $ax^2 + bx + c = 0$ having real roots is (a) 6 (b) 7 (c) 10 (d) 12	1
5	If P $(-1, 1)$ is the middle point of the line segment joining A $(-3, b)$ and B $(1, b + 4)$ then the value of b is (a) 1 (b) -1 (c) 2 (d) 0	1
6	A point P divides the join of A (5, -2) and B (9, 6) are in the ratio 3: 1. The coordinates of P are (a) (4, 7) (b) (12,4) (c) (11 2, 5) (d) (8,4)	1
7	If the distance between the points (8, p) and (4, 3) is 5 then value of p is (a) 6 (b) 0 (c) both(a) and (b) (d) none of these	1
8	In the given below figure, the value of $\angle P$ is (a) 60^0 (b) 80^0 (c) 40^0 (d) 100^0 R 3.8 80 6 C P 12	1

9	T., 4 1 .	ADC .DA	a						
10	in triangle	ABC, ZBA	$C = 90^{\circ}$	and AD	⊥ BC. T	'hen			1
10	(A) BD. CI								
10	(C) BD. CI								
10			near poin	ts, then t	the numb	per of cire	cles that o	can be drawn through	1
	these three points are								
	(a) 1	(b) 0 (c	e) 2 (d) i	infinite					
11	The value of	of $\frac{1-tan^2}{1-tan^2}$	is						1
	(a) 1 (b) 0 (c) 2 (d) infinite The value of $\frac{1-tan^2 45}{1+tan^2 45}$ is (a) $tan 90^\circ$ (b) 1 (c) $sin 45^\circ$ (d) 0								
12	Evaluate (sec A + tan A) $(1 - \sin A)$								1
12	(a) $\sec A$ (b) $\sin A$ (c) $\csc A$ (d) $\cos A$								*
13	If the angle of elevation of a tower from a distance of 100m from its foot is 60°, then the								1
	height of th		on or u to		ir a arsta	01 10	0111 11 0111	its root is oo , then the	1
	_		(4	ນ ະ ∩₄/ <u>2</u> ($d)^{\frac{100}{100}}$				
	$(a)100\sqrt{3}$	$\sqrt{3}$	(($u \int \frac{1}{\sqrt{3}}$				
14						with radi	$i R_1 and 1$	R ₂ is equal to	1
	circumfere					. ~ .			
1.5	(a) $R_1 + R_2$	$= R(b) R_1$	$+ R_2 > R$	$(c) R_1 +$	$R_2 \leq R(0)$	d) Can't	say		
15	The total su								1
	(a) $2\pi(r+h)$	$(b) 2\pi r$	r + h)	(c)	$3\pi r(r +$	<u>h)</u>	$(d) 4\pi$	r(r+h)	
16		-						air is being pumped	1
	into it. The								
	(a) 4 : 1	(b) 1 : 4		(c) 3 :		(d) 1			
17				shuffled	deck of	52 playi	ng cards.	The probability of	1
	getting a no			4					
	$(a) \frac{3}{13} (b) \frac{10}{13} (a)$	$c)\frac{7}{13}$	(d)	$\frac{4}{13}$					
18	In a family of	of 3 children	the prob	ability of	having a	tleast one	hovis ((a) $\frac{7}{8}$ (b) $\frac{1}{8}$ (c) $\frac{3}{4}$ (d)	1
	5	of 5 children	i, the proo	aomity of	naving a	uicast one	700y 13. (8 (b) 8(c) 4(d)	
	5 8								
19									
									1
į l	۸۵	cartianith	o arithn	noticm	oon of f	allowin	a aivon		1
		sertion: th					ggiven		1
	fre	quency di	stributi	on table	e is 13.8	1			1
						1 16	ggiven		1
	fre	quency di	stributi	on table	e is 13.8	1			1
	fre	quency di	stributi 7	on table	13 13.8	1 16	19		1
	fre x f	quency di 4 7	7 10	on table	13 13.8	1 16	19		1
	fre x f	quency di 4 7 ason: $\bar{x} = \underline{x}$	stributi 7 10 <u>•f_ix</u> i	on table	13 13.8	1 16	19		1
	fre x f	quency di 4 7 ason: $\bar{x} = \underline{x}$	7 10	on table	13 13.8	1 16	19		
	fre x f	equency diagram 4 7 7 ason: $\bar{x} = 3$	stribution 7 10 10 sef _i x _i se f _i	10 15	13 20	1 16 25	19 30		
	fre x f	quency di 4 7 7 ason: $\bar{x} = \underline{x}$ assertion (7 10 ef _i x _i = f _i	10 15 eason (R	13 20	1 16 25	19 30	s the correct	
	fre x f	equency diagram 4 7 7 ason: $\bar{x} = 3$	7 10 ef _i x _i = f _i	10 15 eason (R	13 20	1 16 25	19 30	s the correct	
	fre x f Re (a)Both explana	quency di 4 7 ason: $\bar{x} = 3$ assertion (tion of assertion	7 10 Ef _i x _i A) and recrition (A)	on table 10 15 eason (R	13 20 20 are true	1 16 25 25 e and rea	19 30 son (R) is		
	free x f Re (a)Both explana (b)Both	assertion (assertion	7 10 Ef _i x _i A) and recrtion (A) A) and recrtion (A)	eason (R	13 20 20 are true	1 16 25 25 e and rea	19 30 son (R) is	s the correct	
	free x f Re (a)Both explana (b)Both	quency di 4 7 ason: $\bar{x} = 3$ assertion (tion of assertion	7 10 Ef _i x _i A) and recrtion (A) A) and recrtion (A)	eason (R	13 20 20 are true	1 16 25 25 e and rea	19 30 son (R) is		
	free x f Ree (a)Both explana (b)Both explana	assertion (tion of assertion of assertion of assertion (tion of asser	7 10 Ef _i x _i A) and recrtion (A) A) and recrtion (A)	eason (R)	13 20 are true	1 16 25 e and rea	19 30 son (R) is		
	free x f Ree (a)Both explana (b)Both explana	assertion (assertion	7 10 Ef _i x _i A) and recrtion (A) A) and recrtion (A)	eason (R)	13 20 are true	1 16 25 e and rea	19 30 son (R) is		
	free x f Re (a)Both explana (b)Both explana (c)Asset	assertion (assertion (b) is retion (A) is	7 10 Ef _i x _i A) and recrtion (A) A) and recrtion (A) true but	eason (R) eason (R) reason (R	13 20 20 are true (R) is false	1 16 25 e and rea	19 30 son (R) is		
	free x f Re (a)Both explana (b)Both explana (c)Asset	assertion (tion of assertion of assertion of assertion (tion of asser	7 10 Ef _i x _i A) and recrtion (A) A) and recrtion (A) true but	eason (R) eason (R) reason (R	13 20 20 are true (R) is false	1 16 25 e and rea	19 30 son (R) is		
20	free x f Re (a)Both explana (b)Both explana (c)Asset (d)Assert	assertion (tion of assertion (A) is full from the content of the	7 10 Ef _i × _i A) and recrtion (A) A) and recrtion (A) true but alse but i	eason (R) eason (R) reason (R	are true (R) is false (R) is true	1 16 25 e and rea	30 son (R) is	s not the correct	
20	(a)Both explana (b)Both explana (c)Assertion	assertion (tion of assertion (A) is first the value of t	7 10 Ef _i × _i Ef _i A) and recrtion (A) A) and recrtion (A) true but also but in ue of mo	eason (R) eason (R) reason (Increason (Incre	are true (R) is false (R) is true	1 16 25 e and rea	30 son (R) is		1
20	free x f Re (a)Both explana (b)Both explana (c)Asset (d)Assert Assertion Reason:	assertion (A) is fine time dian= (r	To	eason (R) reason (R) reason (R) de and r nean)	are true (R) is false (R) is true (R) is true	1 16 25 e and rea se. 50 and 66	son (R) is then the	value of median is 64	
20	(a)Both explana (b)Both explana (c)Asset (d)Assert Assertion Reason: (a)Both	assertion (A) is fin: if the value median = (rassertion (assertion))	To Io Io Io A) and reception (A) Atrue but Talse but Io ue of mode+2m A) and reception (A)	eason (R) eason (R) reason (Index and reason (R) eason (R)	are true (R) is false (R) is true (R) is true	1 16 25 e and rea se. 50 and 66	son (R) is then the	s not the correct	
20	(a)Both explana (b)Both explana (c)Asset (d)Assert Assertion Reason: (a)Both	assertion (A) is fine time dian= (r	To Io Io Io A) and reception (A) Atrue but Talse but Io ue of mode+2m A) and reception (A)	eason (R) eason (R) reason (Index and reason (R) eason (R)	are true (R) is false (R) is true (R) is true	1 16 25 e and rea se. 50 and 66	son (R) is then the	value of median is 64	
20	(a)Both explana (b)Both explana (c)Asset (d)Assertion Reason: (a)Both explana	assertion (A) is fine tion of assertion (A) is fine the value assertion (assertion (A) is fine tion of assertion (A) is fine tion (A) is fine the value assertion (assertion (A) is fine tion of assertion (A) is fine tion of assertion (A) is fine tion (A) is fin	A) and reception (A) true but also but in the but	eason (R) reason (R) reason (R) de and r nean) eason (R	are true (R) is false (R) is true (R) are true (R) are true (R) is true (R) are true	and rease and re	son (R) is then the son (R) is	value of median is 64	


	(c)Asse	ertion (A) is true b	ut reasons	(R) is fals	se.				
	(d)Assertion (A) is false but reason (R) is true								
	Section - B Section B consists of 5 questions of 2 marks each.								
21	G 1	1 1 10	41 ' 110'	F 1200	41 ' T	CMO CI			2
21 22		Can two numbers have 18 as their HCF and 380 as their LCM? Give reasons. The sum of 5th term and 9th term of an AP is 72 and the sum of 7th and 12th terms is							
22	97. Find th		term or a	II AI 18 /2	and the st	uiii Oi 7tii	and 12th	CHIIS IS	2
23	The diameter of the wheels of a bus is 140 cm. How many revolutions per minute must wheel make in order to move at a speed of 66 km per hour?								2
	OR From a solid cube of side 7 cm, a conical cavity of height 7 cm and radius 3 cm is hollowed out. Find the volume of the remaining solid.								
24	Three coin	s are tossed simul	taneously	. What is t	he probabi	ility of get	tting		2
		actly two tails.							
	(b) at 1	least two heads.		OD					
	A box con	tains 90 discs whi	ch are nur	OR	m 1 to 90	If one dis	ec is draw	n at	
		om the box, find the				ii one uis	c is diawi	ı aı	
		rime number less	-	110) 01100 10					
	_	even prime numbe							
25	E: 14b		·	1 C	-4 14 C		11 1	! _4!14!	2
25	Find the av	verage height of m	iaximum r	number of	students II	rom the 10	ollowing a	istribution:	2
		Height (incm)	160-162	163-165	166-168	169-171	172-174		
		No.ofstudents	15	118	142	127	18		
				Section-					
		Section C	consists	of 6 quest	ions of 3 r	narks eac	eh.		
26	Prove that	$3 + 2\sqrt{3}$ is an irra	tional nun	nber.					3
27		alue of k for which	n the quad	ratic equa	tion k ² x ²	-2(k-1)	x + 4 = 0	has two	3
	real equal	roots.		Or					
	A two-diginumber	it number is four t	imes the s		vice the pro	oduct of it	s digits. F	ind the	
28		Rs. 1000 is invested		-					3
	years.	h year. Does this i	merest for	ın an AP?	11 SO, I1NO	i ine intere	est at the e	ena of 30	
29		la has 8 ribs which a	re equally	spaced. As	suming um	brella to be	e a flat circ	le of	3
	radius 45cn	n, find the area betv	veen the tw	o consecut	ive ribs of t	he umbrell	a.		
		,		OR					
	Two tangents TP and TQ are drawn from an external point T to a circle with centre O, as shown in figure. If they are inclined to each other at an angle of 100° then what is the								
	value of ∠POQ?								
	value of ∠	.τυψ:							

	<u> </u>	
	Q Q T	
30	A survey regarding the heights (in cms) of 50 girls of a class was conducted and the	3
	following data was obtained. Height (incm) 120-130 130-140 140-150 150-160 160-170 Total	
	No.ofgirls 2 8 12 20 8 50	
	1101019113 2 3 12 20 0	
	Find the mean, median and mode of the above data.	
31	Prove that the points A (2, -2), B (14, 10), C (11, 13) and D (-1, 1) are vertices of a rectangle. Find the area of this rectangle.	3
	SECTION D	
	Section D consists of 4 questions of 5 marks each.	
32	Solvethefollowingsystemoflinearequationsgraphically:4 <i>x</i> -5 <i>y</i> +16=0;2 <i>x</i> + <i>y</i> -6=0.Findthecoordinatesoftheverticesofthetriangleformedbytheselinesandy-axis.	5
33	In a triangle PQR, N is a point on PR such that Q N \perp PR. If PN. NR = QN ² , prove that \angle PQR = 90°.	5
	In the below figure, if \triangle ABC ~ \triangle DEF and their sides are of lengths (in cm) as marked along them, then find the lengths of the sides of each triangle.	
-	1	1

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
34	Provetheidentity: $(\sin A + \csc A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A$.	5
	From a point P on the ground the angle of elevation of the top of a 10 m tall building is 30° . A flag is hoisted at the top of the building and the angle of elevation of the top of the flagstaff from P is 45° . Find the length of the flagstaff and the distance of the building from the point P. (You may take $3 = 1.73$)	
35	A cylindrical with radius and height is 4cm and 8cm is filled with Ice-cream and ice-cream is distributed to 10 Children in equal can having hemi-spherical tops. If the height of the conical portion is 4 times the radius of its base, find the radius of the ice-cream cone.	5
	Section-E	
	Case study-based questions are compulsory.	
36	To make his daily office commute comfortable, Ramesh wants to buy a car and plans to take a loan from a bank for this purpose. He repays his total loan of ₹1,18,000 by paying every month starting with the first instalment of ₹1000. If he increases the instalment paid by ₹100 every month, answer the following	
	(a) What is the amount paid by him in 30th instalment?	1
	(b) What is the total amount paid by him in 30 instalments?	1
	(c) What is the ratio of first instalment to last instalment? OR	2
	What amount does he still have to pay after 30 th instalment?	

Jayant has been assigned a task to design a logo for sports day to be worn by students and teachers. The logo is designed as shown in figure. A circle with centre O is inscribed in a Δ ABC such that it touches the sides AB, BC and CA at point D, E and F respectively. The lengths of sides AB, BC and CA are 12cm, 8cm and 10cm respectively.

- (a) Find Length of CF
- (b) Find Length of BE

38

(c) If radius of circle is 4cm, find the area of ΔOAB . OR

Find the area of $\triangle ABC$.

A group of students visited India Gate on a trip. The teacher narrated that India Gate, official name Delhi Memorial, originally called All-India War Memorial is dedicated to troops of British India who died in wars fought between 1914 and 1919. It is also about 138 feet(42m) in height.

- (a) What is the angle of elevation if they're standing 42m away from India Gate?
- (b) What distance should be between the monument and students if they wish to view it from 60 degrees?
- (c) If altitude of sun is at 60degrees, then what is the height of vertical tower that will cast a shadow of length 20m?

OF

India Gate's height is 42m. What will be the cost of the wire if it were to be tied from the top of the monument and reach the ground at elevation angle of 30° @ $\stackrel{>}{\sim}50$ per metre?

1

1

2

KENDRIYA VIDYALAYA SANGATHAN, JAMMU REGION

SAMPLE PAPER SET-6

CLASS-X SUBJECT- MATH (Std)

TIME: 3 HOURS M.M- 80

General Instructions:

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

	SECTIONA	
SR	SectionAconsistsof20questionsof 1markeach.	MARKS
NO		
1	If one end of a diameter of a circle is $(4, 6)$ and the centre is $(-4, 7)$, then the other end	1
	Is	
	a. $(-12, 8)$ b. $(8, -12)$ c. $(8, 10)$ d. $(8, -6)$ If '' α ' and ' β ' are the zeroes of the polynomial $3x^2+11x-4$, then the value of	
2		1
	$\alpha^2 + \beta^2$, is	
	a $\frac{150}{2}$ b. $\frac{145}{2}$ c. $\frac{152}{2}$ d. $\frac{144}{2}$	
3	a $\frac{150}{9}$ b. $\frac{145}{9}$ c. $\frac{152}{9}$ d. $\frac{144}{9}$ One card is drawn from a well shuffled pack of 52 cards. The probability of getting an ace	1
	Is	1
	a $\frac{1}{52}$ b. $\frac{1}{13}$ c. $\frac{4}{13}$ d. $\frac{2}{13}$ A system of two linear equations in two variables is consistent, if their	
4		1
	graphs	
	a. do not intersect at any point b. cut the x – axis	
5	c. intersect only at a point d. coincide	1
5	If the distance between the points $(p, -5)$ and $(2, 7)$ is 13 units, then the value of 'p' is	1
6	a3, -7 b. 3, -7 c. 3, 7 d3, 7 One card is drawn from a well shuffled deck of 52 playing cards. The probability of getting a	1
0	non-face card is	1
	a. $\frac{3}{13}$ b. $\frac{10}{13}$ c. $\frac{7}{13}$ d. $\frac{4}{13}$	
7	The value of $2\tan^2 45^\circ + \cos^2 30^\circ - \sin^2 60^\circ$ is	1
'		1
8	a. 0 b. 1 c. 2 d2 If $\sin A + \sin^2 A = 1$, then the value of $\cos^2 A + \cos^4 A$ is	1
O	a1 b. 2 c. 0 d. 1	1
	a. – 1 0. 2 c. 0 u. 1	
9	In the given figure XY \parallel BC. If AX = 3cm, XB = 1.5cm and	1
	BC = 6cm, then XY is equal to	
	a. 6 cm.	
	b. 4.5 cm	
	c. 3 cm.	
	d. 4 cm	
	В	

10	ABCD is a trapezion				gonals AC and	BD intersect	1
	at O. If $ar(\Delta AOB)$			s equal to	2	2	
11	a. 24 cm ²	b. 42 c		c. 28 c		d. 21 cm ²	1
11	PQ is a tangent dra	-		with centre O	and QOR is a	nameter of the	1
	circle such ∠POR=			30°	d	45°	
12	a. 60° The area of a square	re that can be in	scribed in a ci	rcle of radius	10 cm is	TJ	1
1-	a. 100 sq. cmb. 300				10 0111 15		
13	The longest rod tha						1
	a. 3 edgeb. $\sqrt{2}$ edg	e c. $\sqrt{3}$ edge d	$.\sqrt{5}$ edge				
14	Mode $+\frac{2}{3}$ (Mean –						1
	a. Modeb. Mediano		of these				
15	If a chord subtends			then the area	of the correspo	nding	1
	segment is	8				8	
	$a.\left(\frac{\pi}{6} - \frac{\sqrt{3}}{4}\right)r^2$ sq. un	ite	$h \left(\frac{\pi}{4} - \frac{\sqrt{3}}{3} \right) r^2$	ea unite			
	$\begin{bmatrix} a \cdot \begin{pmatrix} 6 & 4 \end{pmatrix}^1 & \text{sq. un} \\ (\pi & \sqrt{2}) & \text{sq. } \end{bmatrix}$	113	$\binom{7}{2}$	sq. umts			
	c. $\left(\frac{\pi}{6} + \frac{\sqrt{3}}{2}\right) r^2$ sq. u	nits	d. $\left(\frac{n}{2} + \frac{\sqrt{3}}{2}\right)$	r ² sq. units			
16	For the following of	distribution the	sum of lower	limits of the m	nedian class and	modal class is	1
	Class	60 – 70	70 – 80	80 – 90	90 – 100	100 – 110	
	Frequency	10	15	12	20	9	
	a. 190	b. 20		c. 180	d. 170)	
		0.20		. 100	0. 17.	•	
17	A box contains 3 b	lue balls, 2 whi	te balls and 4	red balls. If a	ball is drawn at	random	1
	from the box, the p	probability of ge	etting a white b	oall is			
	a. $\frac{2}{9}$ b. $\frac{3}{9}$ c. 1	$d.\frac{4}{9}$	<u>-</u>				
10	, ,		,				
18	If $\sin \theta$ is $\frac{5}{13}$ then of	$\cos \theta =$					1
	a. $\frac{13}{12}$	b. $\frac{5}{12}$		c. $\frac{12}{5}$ d. $\frac{12}{13}$			
	DIRECTION: In				ent of assertio	n (A) is followed	
	by a statement of	_		,			
19	Assertion: 12 ⁿ end			•			1
	a) Reason : Any nun		digit zero, if it	s prime factor	is of the form ?	2 ^m 5 ⁿ , where m	
	and n are whole n (a)Both assertion (D) and thus an	d maagam (D) is	the comment over	lanation of	
	assertion (A).	A) and reason (K) are true and	i reason (K) is	the correct ex	nanation of	
	assertion (11).						
	(h) Doth assertion (A \ 1 /	R) are true hu	t reason (R) is	1	explanation of	
	(b) both assertion (A) and reason (K) are true bu	i i cason (ix) is	not the correct	explanation of	
	assertion (A).	A) and reason (K) are true ou	t reason (R) is	not the correct	explanation of	
	assertion (A).		,	t reason (K) is	not the correct	explanation of	
	` '		,	reason (R) is	not the correct	explanation of	
	assertion (A). (c)Assertion (A) is	true but reason	(R) is false.	reason (R) is	not the correct	explanation of	
	assertion (A).	true but reason	(R) is false.	reason (R) is	not the correct	explanation of	
20	assertion (A). (c)Assertion (A) is (d)Assertion (A) is	true but reason	(R) is false. n (R) is true.				1
20	assertion (A). (c)Assertion (A) is	true but reason false but reason mid-point of P	(R) is false. n (R) is true.				1
20	assertion (A). (c)Assertion (A) is (d)Assertion (A) is Assertion: C is the	true but reason false but reason e mid-point of P and 1.	(R) is false. n (R) is true. Q, if P is (4, x)	s), C is (y, - 1)	and Q is (- 2, 4	-), then x and y	1
20	assertion (A). (c)Assertion (A) is (d)Assertion (A) is Assertion: C is the respectively are -6 Reason: The mid-	true but reason false but reason e mid-point of P and 1.	(R) is false. n (R) is true. Q, if P is (4, x)	s), C is (y, - 1)	and Q is (- 2, 4	-), then x and y	1
20	assertion (A). (c)Assertion (A) is (d)Assertion (A) is Assertion: C is the respectively are -6 Reason: The mid- $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$	true but reason false but reason e mid-point of P and 1. point of the line	(R) is false. n (R) is true. Q, if P is (4, x) e segment join	i), C is (y, - 1)	and Q is $(-2, -2)$ P(x ₁ , y ₁) and	$Q(x_2, y_2)$ is	1
20	assertion (A). (c)Assertion (A) is (d)Assertion (A) is Assertion: C is the respectively are -6 Reason: The mid-	true but reason false but reason e mid-point of P and 1. point of the line	(R) is false. n (R) is true. Q, if P is (4, x) e segment join	i), C is (y, - 1)	and Q is $(-2, -2)$ P(x ₁ , y ₁) and	$Q(x_2, y_2)$ is	1
20	assertion (A). (c)Assertion (A) is (d)Assertion (A) is Assertion: C is the respectively are -6 Reason: The mid- $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$ (a)Both assertion (true but reason false but reason e mid-point of P and 1. point of the line A) and reason ((R) is false. n (R) is true. Q, if P is (4, x) e segment join R) are true and	ing the points d reason (R) is	and Q is $(-2, 4)$ P(x ₁ , y ₁) and s the correct ex	Q(x_2 , y_2) is blanation of	1
20	assertion (A). (c)Assertion (A) is (d)Assertion (A) is Assertion: C is the respectively are -6 Reason: The mid- $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$ (a)Both assertion (assertion (A).	true but reason false but reason e mid-point of P and 1. point of the line A) and reason (A) and reason ((R) is false. n (R) is true. Q, if P is (4, x) e segment join R) are true and R) are true bu	ing the points d reason (R) is	and Q is $(-2, 4)$ P(x ₁ , y ₁) and s the correct ex	Q(x_2 , y_2) is blanation of	1

	(d)Assertion (A) is false but	t reas	on (R)	is true						
				SE	CTION	R				
	Section	nBco	nsists			2 mark	seach.			
21	Explain why (7 x 11 x 13)							nposite	numbers?	2
22	Find the value of x+y, if 3x							•		2
23	The area enclosed between					cm ² . If	the radi	us of the	e outer	2
	circle is 21 cm, find the rad	lius of	f the ir	ner circ	le.					
	OR	500	14			- 4:-4	.)	7! 1 41 _{2 -}	
	The wheels of a car make 2 diameter of a wheel.	2500 r	evoiui	ions in c	covering	g a distar	ice of 4.5	95 KM. I	find the	
24	A class teacher has the following	owing	ahser	ntee reco	ord of 40) student	s of a cla	ass for t	he	2
_	whole term.	ع۱۱۱۱ ت	, aosei	100 1000	71 a 01 10	, stadelli	.5 O1 u c 1	ass 101 t		_
	20 40 40		100000	100 000	00.00	55000	2202	7521E-1227	1	
	Number of days	0-6	6-10	10-14	14-20	20-28	28-38	38-40		
	Number of students	11	10	7	4	4	3	1		
	Find the mean number of d	OVC O	etudor	ot was al	acont	-			,	
25	Find the mean number of d A bag contains 5 black, 7 re					is drawr	from th	ie hag at		2
	random. Find the probability							_		
	black.	•			` '	. /		` '		
			OR						_	
	A box contains 90 discs wh				rom 1 to	90. If o	ne disc i	s drawn	at random from	
	the box, find the probability	y that	it bear	ſS						
	i. a two-digit numberii. a perfect square number									
	iii. a number divisible by 5									
		·	SEC	CTION	C					
	SectionCco	nsists	of 6qı	iestions	of 3mar	kseach.				
26	Prove that $\frac{2+\sqrt{3}}{5}$ is an ra	tiona	l numl	er, give	n that $\sqrt{2}$	3 is an ir	rational	number		3
27	If α and β are the zeros of t					$) = 3x^2 -$	4x + 1,	find a		3
	quadratic polynomial whos	e zero	s are	$\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$	•					
28	If the points A (a, -11), B (5, b),	C (2,	15) and 1	D (1, 1)	are the v	vertices o	of a para	allelogram	3
	ABCD, find the values of a									_
29	A train covered a certain di									3
	faster, it would have taken by 10 km/h, it would have									
	covered by the train.	iancii	J HOU	is more	man mc	scricuul	ea tille.	ı mu ul	c distallee	
	OR									
	A lending library has a fixe									
	day thereafter. Saritha paid									
20	book, she kept for five days					the char	ge for ea	ach extr	a day.	2
30	The radius of the incircle o segment into which one sid		angie i	is 4 cm a	ana tne			71		3
	divided by the point of con		re 6 cr	n and 8	cm			// `		
	Determine the other two side			ii aiiu o v	CIII.		Î		1	
	the triangle.						11	1	11	
	C						11		1	
						8 cm		cm	4 cm	
						//	1	40	m 6cm	
						16				
						\vdash	8 cm-		—6 cm—	
31	Find the mean marks per st	udent	, using	g assume	ed-mean	method	•			3

1								1
	Marks	0 -10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	
	Number of students	12	18	27	20	17	6	
	OR In a health check-up, the number following table:	er of hear	rt beats of 4	10 women a	re recorded	l in the		
	Number of heart be	ats / mi	nute	65-69	70-74	75-79	80-84	
	Number of w	omen		2	18	16	4	
	Find the mean of data.		CECTION	JT)				
	SectionDconsis	ts of4an	SECTION estions of 5		 1.			
	A Train travels a distance of 30 increased by 5 km an hour, the original speed of the train. A peacock is sitting on the top of bottom of the pillar, a snake is of peacock pounces it. If their speed?	journey voor a pilla coming to	OR r which is 9 o its hole at	e taken two Om high. From the base of	hours less. om a point, f the pillar.	Find the 27m away seeing the s	snake, the	5
	CD and GH are respectively the bisectors of \angle ACB and \angle EGF such that D and H lie on sides AB and FE of \triangle ABC and \triangle EFG respectively. If \triangle ABC \sim \triangle FEG, show that (i) $\frac{CD}{GH} = \frac{AC}{FG}$ (ii) \triangle DCB \sim \triangle HGE							5
	Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30° respectively. Find the height of the poles and the distance of the point from the poles. OR A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower, the angle of elevation of the top of the tower is 60°. From another point 20 m away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30° (see the given figure). Find the height of the tower and the width of the CD and 20 m from pole AB.						5	
	A gulab jamun, contains sugar sapproximately how much syrup shaped like a cylinder with two diameter 2.8 cm.	would b	e found in	45 gulab ja	muns, each		33	5
		SE	CTIONE					
	Casestudyb	asedque	stionsarec	ompulsory	•			

36	Vijay is trying to find the average height of a tower near his house. He is using the properties of similar triangles. The height of Vijay's house, if 20m when Vijay's house casts a shadow a shadow 10m long on the ground. At the same time, the tower casts a shadow 50m long on the ground and the house of Ajay casts 20m shadow on the ground. Q1. What is the height of the tower? (1) Q2. What is the height of Ajay's house? (1) Q3. When the tower casts a shadow of 40m, same time what will be the length of the shadow of Ajay's House? (2)	4
37	India is competitive manufacturing location due to the low cost of manpower and strong technical and engineering capabilities contributing to higher quality production runs. The production of TV sets in a factory increases uniformly by a fixed number every year. It produced 16000 sets in 6 th year and 22600 in 9 th year. 1. Find the production during first year. (1) 2. Find the production during 8 th year. (1) 3. Find the difference of the production during 7 th year and 4 th year	4
38	A Ferris wheel (or a big wheel in the United Kingdom) is an amusement ride consisting of a rotating upright wheel with multiple passenger, carrying components (commonly referred to as passenger cars, cabins, tubs, capsules, gondolas, or pods) attached to the rim in such a way that as the wheel turns, they are kept upright, usually by gravity. After taking a ride in Ferris wheel, Aarti came out from the crowd and was observing her friends who were enjoying the ride. She was curious about the different angles and measures that the how wheel will from. She forms the figure as given below. (i) In the given figure, find ∠ROQ. (1) (ii) Find ∠RQP. (iii) Find ∠ORP. (2)	4

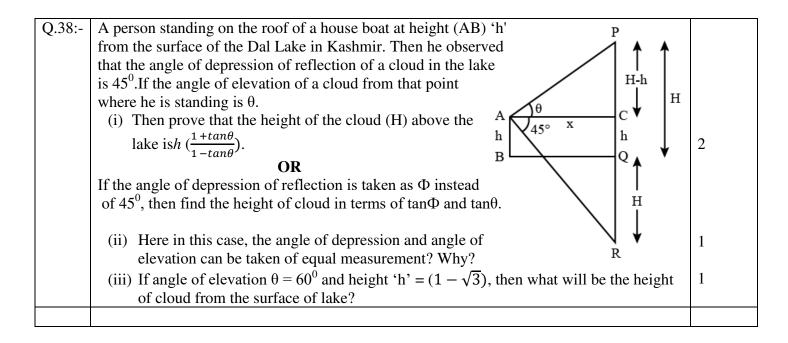
Class- X Session- 2022-23 Subject- Mathematics (Standard) Sample Question Paper- SET 7

Time Allowed: 3 Hrs. <u>Maximum Marks: 80</u>

General Instructions:

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E

8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.


	SE	CTION A	
S.			MARK
NO.			S
Q.1:-	The least number that is divisible by all the	e numbers from 1 to 10 (both inclusive) is	1
	(a) 10	(b) 100	
	(c) 504	(d) 2520	
Q.2:-	Find the values of k for which the quadrat	ic equation $2x^2 - kx + k = 0$ has equal roots is	1
	(a) 0 only	(b) 4	
	(c) 8 only	(d) 0, 8	
Q.3:-	If the zeroes of the quadratic polynomial	$x^2 + (a + 1) x + b$ are 2 and -3 , then	1
	(a) $a = -7$, $b = -1$	(b) $a = 5, b = -1$	
	(c) $a = 2, b = -6$	(d) $a = 0, b = -6$	
Q.4:-	If a pair of linear equations is consistent, t	then the lines will be	1
	(a) parallel	(b) always coincident	
	(c) intersecting or coincident	(d) always intersecting	
Q.5:-	If the distance between the points (4, p) ar	nd (1, 0) is 5, then the value of p is	1
	(a) 4 only	(b) ± 4	
	(c) - 4 only	(d) 0	
Q.6:-	If $\triangle ABC \sim \triangle EDF$ and $\triangle ABC$ is not simil	ar toΔ DEF, then which of the following is not	1
	true?		
	(a) BC \times EF = AC \times FD	(b) $AB \times EF = AC \times DE$	
	(c) $BC \times DE = AB \times EF$	(d) $BC \times DE = AB \times FD$	
Q.7:-	If $\triangle ABC$ is a right angled at C, then the va	alue of $cos(A + B)$ is	1
	(a) 0	(b) 1	
	(c) $\frac{1}{2}$	(d) $\frac{\sqrt{3}}{2}$	
		$(u)\frac{1}{2}$	
Q.8:-	If $\sin\theta + \cos\theta = \sqrt{2}$, then $\tan\theta + \cot\theta =$		1
	(a) 1	(b) 2	
	(c) 3	(d) 4	
Q.9:-	In triangles ABC and DEF, $\frac{AB}{DE} = \frac{BC}{FD}$ then	they will be similar, when	1
	(a) ∠B = ∠E	(b) ∠A =∠D	
	(c) ∠B = ∠D	(d) $\angle A = \angle F$	
Q.10:-	Area of the largest triangle that can be ins		1
-	(a) R ² sq. units	(b) $\frac{1}{2}$ R ² sq. units	
	(c) 2 R ² cm	(d) $\sqrt{2}$ R ² cm	
Q.11:-	Volumes of two spheres are in the ratio 64	4 : 27. The ratio of their surface areas is	1
	(a) 3:4	(b) 4:3	
	(c) 9:16	(d) 16:9	

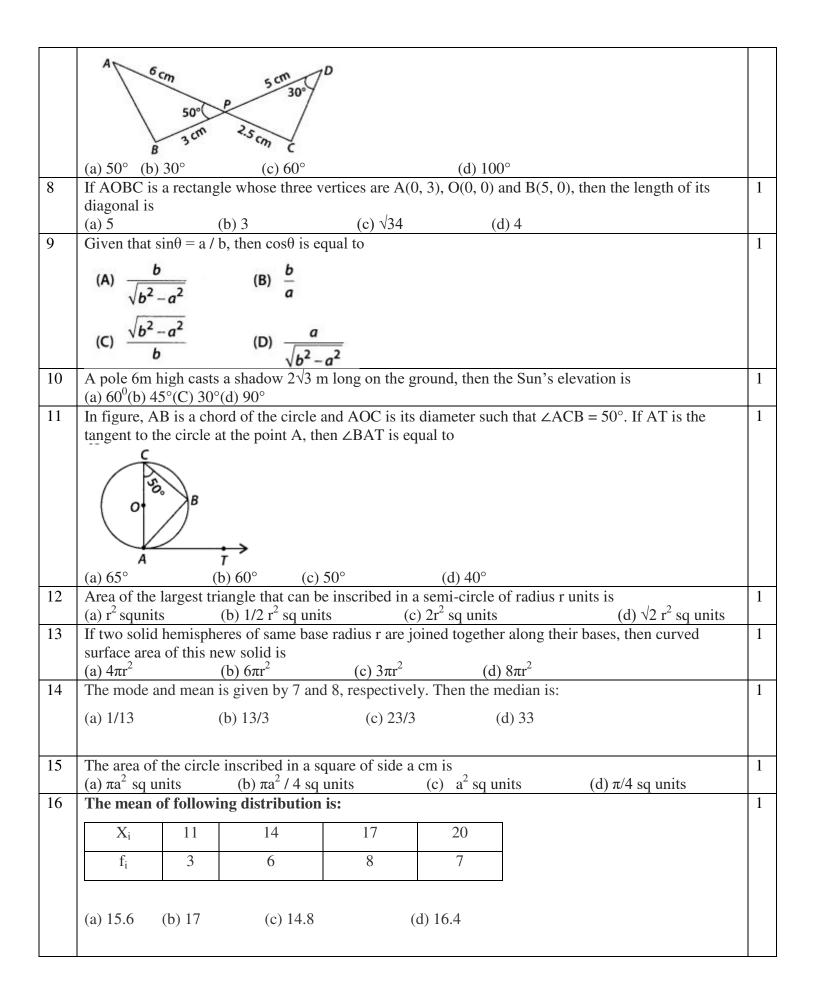
(a) Equilateral triangle (c) Scalene triangle (d) None of the above Q.13: In Figure, AT is a tangent to the circle with centre O such that OT = 4 cm and ∠OTA = 30°. Then AT is equal to (a) 4 cm (b) 2 cm (c) 2 √3 cm (d) 4 √3 cm [If the difference of Mode and Median of a data is 24, then the difference of median and mean is (a) 8 (b) 12 (c) 24 (d) 36 Q.15: The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm² (b) 128 cm² (c) 64 √2 cm² (d) 64 cm² Q.16: Construction of a cumulative frequency table is useful in determining the (a) mean (c) mode (d) all the above three measures Q.17: Which of the following cannot be the probability of an event? (a) $\frac{1}{2}$ (b) 0.1 (c) 3% (d) $\frac{17}{16}$ Q.18: If sinθ − cosθ = 0, then the value of (sin⁴θ + cos⁴θ) is (a) 1 (b) $\frac{1}{2}$ (c) $\frac{1}{2}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19: Statement (A): LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (c) Assertion (A) is false to treason (R) is true. (d) Assertion (A) is false but reason (R) is false (d) Assertion (A): is true but reason (R) is true. Q.20: Statement (R): The coordinates of the mid-point of the line segment joining the points P(si, y); and Q(sz, y); are six+sz yz+yz.	Q.12:-	In the given fig. $\frac{PS}{SQ} = \frac{PT}{TR}$, $\angle PST = \angle PRQ$. Then triangle PQR is	1
(a) Equilateral triangle (c) Scalene triangle (d) None of the above In Figure, AT is a tangent to the circle with centre O such that OT = 4 cm and ∠OTA = 30°. Then AT is equal to (a) 4 cm (b) 2 cm (c) 2 √3 cm (d) 4 √3 cm If the difference of Mode and Median of a data is 24, then the difference of median and mean is (a) 8 (b) 12 (c) 24 (d) 36 Q.15: The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm² (b) 128 cm² (c) 64 √2 cm² (d) 44 cm² Q.16: Construction of a cumulative frequency table is useful in determining the (a) mean (b) median (c) mode (d) all the above three measures Which of the following cannot be the probability of an event? (a) 1/3 (b) 0.1 (c) 3% (d) 1/4/2 Q.18: If sim0 − cos0 = 0, then the value of (sin⁴ 0 + cos⁴ 0) is (a) 1 (b) 2/4 (c) 1/2 Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Statement (A):- LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) is false (d) Assertion (A) is false with reason (R) is false (d) Assertion (A) is false but reason (R) is rue. Statement (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-1, 6, -4) is (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points		SQ TR	
(a) Equilateral triangle (b) Isosceles triangle (c) Scalene triangle (d) None of the above In Figure, AT is a tangent to the circle with centre O such that OT = 4 cm and ∠OTA = 30°. Then AT is equal to (a) 4 cm (b) 2 cm (c) 2 √3 cm (d) 4 √3 cm If the difference of Mode and Median of a data is 24, then the difference of median and mean is (a) 8 (b) 12 (c) 24 (d) 36 Q.15: The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm² (b) 128 cm² (c) 64 √2 cm² (d) 64 cm² Q.16: (a) mean (b) median (c) mode (d) all the above three measures Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (b) 0.1 (c) $\frac{3}{4}$ (d) $\frac{1}{4}$ Q.18: If sim0 — cos0 = 0, then the value of (sin⁴ 0 + cos⁴ 0) is (a) 1 (c) $\frac{1}{2}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Statement (A):- LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) is false (d) Assertion (A) is false (d) Assertion (A) is false (d) Assertion (A) is false the mid-point of the line segment joining the points The coordinates of the mid-point of the line segment joining the points			
(a) Equilateral triangle (b) Isosceles triangle (c) Scalene triangle (d) None of the above In Figure, AT is a tangent to the circle with centre O such that OT = 4 cm and ∠OTA = 30°. Then AT is equal to (a) 4 cm (b) 2 cm (c) 2 √3 cm (d) 4 √3 cm If the difference of Mode and Median of a data is 24, then the difference of median and mean is (a) 8 (b) 12 (c) 24 (d) 36 Q.15: The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm² (b) 128 cm² (c) 64 √2 cm² (d) 64 cm² Q.16: (a) mean (b) median (c) mode (d) all the above three measures Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (b) 0.1 (c) $\frac{3}{4}$ (d) $\frac{1}{4}$ Q.18: If sim0 — cos0 = 0, then the value of (sin⁴ 0 + cos⁴ 0) is (a) 1 (c) $\frac{1}{2}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Statement (A):- LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) is false (d) Assertion (A) is false (d) Assertion (A) is false (d) Assertion (A) is false the mid-point of the line segment joining the points The coordinates of the mid-point of the line segment joining the points			
(a) Equilateral triangle (b) Isosceles triangle (c) Scalene triangle (d) None of the above In Figure, AT is a tangent to the circle with centre O such that OT = 4 cm and ∠OTA = 30°. Then AT is equal to (a) 4 cm (b) 2 cm (c) 2 √3 cm (d) 4 √3 cm If the difference of Mode and Median of a data is 24, then the difference of median and mean is (a) 8 (b) 12 (c) 24 (d) 36 Q.15: The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm² (b) 128 cm² (c) 64 √2 cm² (d) 64 cm² Q.16: (a) mean (b) median (c) mode (d) all the above three measures Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (b) 0.1 (c) $\frac{3}{4}$ (d) $\frac{1}{4}$ Q.18: If sim0 — cos0 = 0, then the value of (sin⁴ 0 + cos⁴ 0) is (a) 1 (c) $\frac{1}{2}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Statement (A):- LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) is false (d) Assertion (A) is false (d) Assertion (A) is false (d) Assertion (A) is false the mid-point of the line segment joining the points The coordinates of the mid-point of the line segment joining the points		\sim	
(a) Equilateral triangle (b) Isosceles triangle (c) Scalene triangle (d) None of the above In Figure, AT is a tangent to the circle with centre O such that OT = 4 cm and ∠OTA = 30°. Then AT is equal to (a) 4 cm (b) 2 cm (c) 2 √3 cm (d) 4 √3 cm If the difference of Mode and Median of a data is 24, then the difference of median and mean is (a) 8 (b) 12 (c) 24 (d) 36 Q.15: The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm² (b) 128 cm² (c) 64 √2 cm² (d) 64 cm² Q.16: (a) mean (b) median (c) mode (d) all the above three measures Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (b) 0.1 (c) $\frac{3}{4}$ (d) $\frac{1}{4}$ Q.18: If sim0 — cos0 = 0, then the value of (sin⁴ 0 + cos⁴ 0) is (a) 1 (c) $\frac{1}{2}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Statement (A):- LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) is false (d) Assertion (A) is false (d) Assertion (A) is false (d) Assertion (A) is false the mid-point of the line segment joining the points The coordinates of the mid-point of the line segment joining the points			
(a) Equilateral triangle (b) Isosceles triangle (c) Scalene triangle (d) None of the above In Figure, AT is a tangent to the circle with centre O such that OT = 4 cm and ∠OTA = 30°. Then AT is equal to (a) 4 cm (b) 2 cm (c) 2 √3 cm (d) 4 √3 cm If the difference of Mode and Median of a data is 24, then the difference of median and mean is (a) 8 (b) 12 (c) 24 (d) 36 Q.15: The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm² (b) 128 cm² (c) 64 √2 cm² (d) 64 cm² Q.16: (a) mean (b) median (c) mode (d) all the above three measures Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (b) 0.1 (c) $\frac{3}{4}$ (d) $\frac{1}{4}$ Q.18: If sim0 — cos0 = 0, then the value of (sin⁴ 0 + cos⁴ 0) is (a) 1 (c) $\frac{1}{2}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Statement (A):- LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) is false (d) Assertion (A) is false (d) Assertion (A) is false (d) Assertion (A) is false the mid-point of the line segment joining the points The coordinates of the mid-point of the line segment joining the points		O P	
Co. Scalene triangle (d) None of the above			
Q.13:- In Figure, AT is a tangent to the circle with centre O such that OT = 4 cm and \angle OTA = 30°. Then AT is equal to (a) 4 cm (c) 2 $\sqrt{3}$ cm (d) $4\sqrt{3}$ cm [If the difference of Mode and Median of a data is 24, then the difference of median and mean is (a) 8 (b) 12 (a) 36 (c) 24 (d) 36 Q.15:- (a) 256 cm² (b) 128 cm² (c) 64 $\sqrt{2}$ cm² (d) 64 cm² Q.16:- (a) 256 cm² (d) 64 cm² (e) 2 construction of a cumulative frequency table is useful in determining the (a) mean (c) mode (d) all the above three measures Which of the following cannot be the probability of an event? Q.17:- (a) $\frac{1}{3}$ (b) 0.1 (c) $\frac{3}{4}$ (d) $\frac{1}{16}$ If $\sin\theta - \cos\theta = 0$, then the value of $(\sin^4\theta + \cos^4\theta)$ is (a) 1 (c) $\frac{1}{2}$ Assertion and Reason hased questions DIRECTION: In the question number 19 and 20, a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- LCM and HCF of pq and pq^2 is p^2q^2 and pq respectively. Reason (R):- LCM and HCF of pq and pq^2 is p^2q^2 and pq respectively. (a) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) is false of (A) Assertion (A) is false but reason (R) is false (d) Assertion (A) is false but reason (R) is fure. Statement (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-6, 4) is (-4, 2) Reason (R):- The coordinates of the mid-point of the line segment joining the points			
(a) 4 cm (b) 2 cm (d) 4 √3 cm Q.14: If the difference of Mode and Median of a data is 24, then the difference of median and mean is (a) 8 (b) 12 (c) 24 (d) 36 Q.15: The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm² (b) 128 cm² (c) 64 √2 cm² (d) 64 cm² Q.16: Q.16: Construction of a cumulative frequency table is useful in determining the (a) mean (b) median (c) mode (d) all the above three measures Q.17: Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (b) 0.1 (c) $\frac{3}{3}$ (d) $\frac{17}{16}$ (lf sinθ − cos θ = 0, then the value of (sin¹ θ + cos⁴ θ) is (a) 1 (b) $\frac{3}{4}$ (c) $\frac{1}{4}$ (d) $\frac{1}{4}$ (e) $\frac{1}{2}$ (d) $\frac{1}{4}$ (e) $\frac{1}{2}$ (f) $\frac{1}{4}$ (f) $\frac{1}{4}$ (g) $\frac{1}{4}$	Q.13:-		1
(a) 4 cm (b) 2 cm (c) $2\sqrt{3} \text{ cm}$ (d) $4\sqrt{3} \text{ cm}$ Q.14:- If the difference of Mode and Median of a data is 24, then the difference of median and mean is (a) 8 (b) 12 (c) 24 (d) 36 Q.15:- The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm^2 (b) 128 cm^2 (c) $64\sqrt{2} \text{ cm}^2$ (d) 64 cm^2 Q.16:- Construction of a cumulative frequency table is useful in determining the (a) mean (b) median (c) mode (d) all the above three measures Q.17:- Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (b) 0.1 (c) 3% (d) $\frac{17}{16}$ Q.18:- If $\sin\theta - \cos\theta = 0$, then the value of $(\sin^4\theta + \cos^4\theta)$ is (a) 1 (b) $\frac{3}{4}$ (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ (e) $\frac{1}{2}$ (f) $\frac{1}{2}$ (f) $\frac{1}{2}$ (f) $\frac{1}{2}$ (g) $\frac{1}{2}$ (e) $\frac{1}{2}$ (f) $\frac{1}{2}$ (f) $\frac{1}{2}$ (g) 1		30°. Then AT is equal to	
(a) 4 cm (c) 2√3 cm (d) 4√3 cm Q.14:- If the difference of Mode and Median of a data is 24, then the difference of median and mean is (a) 8 (b) 12 (c) 24 (d) 36 Q.15:- The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm² (b) 128 cm² (c) 64√2 cm² (d) 64 cm² Q.16:- Construction of a cumulative frequency table is useful in determining the (a) mean (c) mode (d) all the above three measures Q.17:- Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (c) 3% (d) $\frac{17}{16}$ Q.18:- If sinθ − cosθ = 0, then the value of (sin⁴ θ + cos⁴ θ) is (a) 1 (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) is false (d) Assertion (A) is false but reason (R) is true. Q.20:- Statement (A):- Condition (A):- Cond			
(a) 4 cm (c) 2√3 cm (d) 4√3 cm Q.14:- If the difference of Mode and Median of a data is 24, then the difference of median and mean is (a) 8 (b) 12 (c) 24 (d) 36 Q.15:- The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm² (b) 128 cm² (c) 64√2 cm² (d) 64 cm² Q.16:- Construction of a cumulative frequency table is useful in determining the (a) mean (c) mode (d) all the above three measures Q.17:- Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (c) 3% (d) $\frac{17}{16}$ Q.18:- If sinθ − cosθ = 0, then the value of (sin⁴ θ + cos⁴ θ) is (a) 1 (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) is false (d) Assertion (A) is false but reason (R) is true. Q.20:- Statement (A):- Condition (A):- Cond			
(a) 4 cm (c) 2 √3 cm (d) 4 √3 cm Q.14:- If the difference of Mode and Median of a data is 24, then the difference of median and mean is (a) 8 (b) 12 (c) 24 (d) 36 Q.15:- The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm² (b) 128 cm² (c) 64 √2 cm² (d) 64 cm² Q.16:- Construction of a cumulative frequency table is useful in determining the (a) mean (c) mode (d) all the above three measures Q.17:- Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (c) 3% (d) $\frac{17}{16}$ Q.18:- If sinθ − cosθ = 0, then the value of (sin⁴ θ + cos⁴ θ) is (a) 1 (b) $\frac{3}{4}$ (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) is false (d) Assertion (A) is false but reason (R) is true. Q.20:- Statement (A):- Conditional Median of a data is 24, then the difference of median and mean is 24, then the difference of median and mean is 24, then the difference of median and mean is 24, then the difference of median and in a data is 24, then the difference of median and mean is 24. The mid-point of the line segment joining the points A (-2, 8) and B (-1, 6, -4) is (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points			
$\begin{array}{c} \text{(c) } 2\sqrt{3} \text{ cm} & \text{(d) } 4\sqrt{3} \text{ cm} \\ \text{Q.14:-} & \text{If the difference of Mode and Median of a data is 24, then the difference of median and mean is} \\ \text{(a) 8} & \text{(b) } 12 \\ \text{(c) } 24 & \text{(d) } 36 \\ \text{Q.15:-} & \text{The area of the square that can be inscribed in a circle of radius 8 cm is} \\ \text{(a) } 256 \text{ cm}^2 & \text{(b) } 128 \text{ cm}^2 \\ \text{(c) } 64\sqrt{2} \text{ cm}^2 & \text{(d) } 64 \text{ cm}^2 \\ \text{Q.16:-} & \text{Construction of a cumulative frequency table is useful in determining the} \\ \text{(a) mean} & \text{(c) mode} & \text{(d) all the above three measures} \\ \text{Q.17:-} & \text{Which of the following cannot be the probability of an event?} \\ \text{Q.18:-} & \text{If } \sin\theta - \cos\theta = 0 \text{, then the value of } (\sin^4\theta + \cos^4\theta) \text{ is} \\ \text{(a) } 1 & \text{(b) } \frac{3}{16} \\ \text{(c) } \frac{1}{2} & \text{(d) } \frac{1}{4} \\ \text{(e) } \frac{1}{2} & \text{(d) } \frac{1}{4} \\ \text{DIRECTION: In the question number } 19 \text{ and } 20 \text{, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement} \\ \text{Q.19:-} & \text{Statement (A):-} & \text{LCM and HCF of } p^2q \text{ and } pq^2 \text{ is } p^2q^2 \text{ and } p \text{ q respectively.} \\ \text{Reason (R):} & \text{The LCM of two numbers is always equal to their product.} \\ \text{(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) is false (d) Assertion (A) is false but reason (R) is false (d) Assertion (A) is false but reason (R) is true.} \\ \text{Statement (A):-} & \text{The mid-point of the line segment joining the points A (-2, 8) and B (-6, -4, 2) } \\ \text{Reason (R):} & \text{The coordinates of the mid-point of the line segment joining the points} \\ \text{The coordinates of the mid-point of the line segment joining the points} \\ \text{The coordinates of the mid-point of the line segment joining the points} \\ \text{The coordinates of the mid-point of the line segment joining the points} \\ \text{The coordinates of the mid-point of the line segment joining the points} \\ \text{The coordinates of the mid-point of the line segment joining the points} \\ The coordinates of the mid-point of the line segmen$		Acm_	
Q.14:- If the difference of Mode and Median of a data is 24, then the difference of median and mean is (a) 8 (b) 12 (c) 24 (d) 36 Q.15:- The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm² (b) 128 cm² (c) 64 $\sqrt{2}$ cm² (d) 64 cm² Q.16:- Construction of a cumulative frequency table is useful in determining the (a) mean (b) median (c) mode (d) all the above three measures Q.17:- Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (b) 0.1 (c) 3% (d) $\frac{17}{16}$ Q.18:- If $\sin\theta - \cos\theta = 0$, then the value of $(\sin^4\theta + \cos^4\theta)$ is (a) 1 (b) $\frac{3}{4}$ (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) is false (d) Assertion (A) is false but reason (R) is false (d) Assertion (A) is fuse but reason (R) is false (d) Assertion (A): The mid-point of the line segment joining the points A (-2, 8) and B (-6, -4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points		30°	
Q.14:- If the difference of Mode and Median of a data is 24, then the difference of median and mean is (a) 8 (b) 12 (c) 24 (d) 36 Q.15:- The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm² (b) 128 cm² (c) 64 $\sqrt{2}$ cm² (d) 64 cm² Q.16:- Construction of a cumulative frequency table is useful in determining the (a) mean (b) median (c) mode (d) all the above three measures Q.17:- Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (b) 0.1 (c) 3% (d) $\frac{17}{16}$ Q.18:- If $\sin\theta - \cos\theta = 0$, then the value of $(\sin^4\theta + \cos^4\theta)$ is (a) 1 (b) $\frac{3}{4}$ (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) is false (d) Assertion (A) is false but reason (R) is false (d) Assertion (A) is fuse but reason (R) is false (d) Assertion (A): The mid-point of the line segment joining the points A (-2, 8) and B (-6, -4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points		(c) 4 cm (b) 2 cm	
Q.14:- If the difference of Mode and Median of a data is 24, then the difference of median and mean is (a) 8 (b) 12 (c) 24 (d) 36 Q.15:- The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm² (b) 128 cm² (c) $64\sqrt{2}$ cm² (d) 64 cm² Q.16:- Construction of a cumulative frequency table is useful in determining the (a) mean (c) mode (d) all the above three measures Q.17:- Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (b) 0.1 (c) 3% (d) $\frac{17}{16}$ Q.18:- If $\sin 0 - \cos 0 = 0$, then the value of $(\sin^4 0 + \cos^4 0)$ is (a) 1 (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ (e) $\frac{1}{2}$ (f) $\frac{1}{2}$ (g) $\frac{1}{2}$ (h) $\frac{1}{$			
mean is (a) 8 (b) 12 (c) 24 (d) 36 Q.15:- The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm² (b) 128 cm² (c) $64\sqrt{2}$ cm² (d) 64 cm² Q.16:- Construction of a cumulative frequency table is useful in determining the (a) mean (b) median (c) mode (d) all the above three measures Q.17:- Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (b) 0.1 (c) 3% (d) $\frac{17}{16}$ Q.18:- If $\sin\theta - \cos\theta = 0$, then the value of $(\sin^4\theta + \cos^4\theta)$ is (a) 1 (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- LCM and HCF of p²q and pq² is p²q² and pq q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) is true but reason (R) is false (d) Assertion (A) is true but reason (R) is false (d) Assertion (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-6, 4) is (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points	0.14:-		1
Q.15:- The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm^2 (b) 128 cm^2 Q.16:- Construction of a cumulative frequency table is useful in determining the (a) mean (b) median (c) mode (d) all the above three measures Q.17:- Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (b) 0.1 (c) 3% (d) $\frac{17}{16}$ Q.18:- If $\sin\theta - \cos\theta = 0$, then the value of $(\sin^4\theta + \cos^4\theta)$ is (a) 1 (b) $\frac{3}{4}$ (c) $\frac{1}{2}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- LCM and HCF of p ² q and pq ² is p ² q ² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false (d) Assertion (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-6, -4) is (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points	Q.1		
Q.15:- The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm^2 (b) 128 cm^2 (c) $64 \sqrt{2} \text{ cm}^2$ (d) 64 cm^2 Q.16:- Construction of a cumulative frequency table is useful in determining the (a) mean (b) median (c) mode (d) all the above three measures Q.17:- Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (b) 0.1 (c) 3% (d) $\frac{17}{16}$ Q.18:- If $\sin\theta - \cos\theta = 0$, then the value of $(\sin^4\theta + \cos^4\theta)$ is (a) 1 (b) $\frac{3}{4}$ (c) $\frac{1}{2}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- LCM and HCF of p^2q and pq^2 is p^2q^2 and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false (d) Assertion (A): is false but reason (R) is fune. Q.20:- Statement (A):- The mid-point of the line segment joining the points The coordinates of the mid-point of the line segment joining the points		(a) 8 (b) 12	
$ \begin{array}{c} \text{(a) } 256 \text{cm}^2 & \text{(b) } 128 \text{cm}^2 \\ \text{(c) } 64 \sqrt{2} \text{cm}^2 & \text{(d) } 64 \text{cm}^2 \\ \end{array} \\ \text{Q.16:} \\ \text{Construction of a cumulative frequency table is useful in determining the} \\ \text{(a) mean} & \text{(b) median} \\ \text{(c) mode} & \text{(d) all the above three measures} \\ \end{array} \\ \text{Q.17:} \\ \text{Which of the following cannot be the probability of an event?} \\ \text{(a) } \frac{1}{3} & \text{(b) } 0.1 \\ \text{(c) } 3\% & \text{(d) } \frac{17}{16} \\ \end{array} \\ \text{Q.18:-} \\ \text{If } \sin\theta - \cos\theta = 0 \text{, then the value of } (\sin^4\theta + \cos^4\theta) \text{ is } \\ \text{(a) } 1 & \text{(b) } \frac{3}{4} \\ \text{(c) } \frac{1}{2} & \text{(d) } \frac{1}{4} \\ \end{array} \\ \text{DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement } \\ \text{Q.19:-} \\ \text{Statement } (A):- LCM \text{ and } HCF \text{ of } p^2 \text{q and } pq^2 \text{ is } p^2 q^2 \text{ and } p \text{ q respectively.} \\ \text{Reason } (R): \\ \text{(a) Both assertion } (A) \text{ and reason } (R) \text{ are true and reason } (R) \text{ is the correct explanation of assertion } (A) \\ \text{(b) Both assertion } (A) \text{ and reason } (R) \text{ are true and reason } (R) \text{ is not the correct explanation of assertion } (A) \\ \text{(c) Assertion } (A) \text{ is false but reason } (R) \text{ is false} \\ \text{(d) Assertion } (A) \text{ The mid-point of the line segment joining the points} \\ \text{Reason } (R): \\ \text{The coordinates of the mid-point of the line segment joining the points} \\ \text{The coordinates of the mid-point of the line segment joining the points} \\ \text{The coordinates of the mid-point of the line segment joining the points} \\ \text{The coordinates of the mid-point of the line segment joining the points} \\ \text{The coordinates of the mid-point of the line segment joining the points} \\ \text{The coordinates of the mid-point of the line segment joining the points} \\ \text{The coordinates of the mid-point of the line segment joining the points} \\ \text{The coordinates of the mid-point of the line segment joining the points} \\ \text{The coordinates of the mid-point of the line segment joining the points} \\ The coordinates of the mid-point of the li$	0.15		
Q.16:- Construction of a cumulative frequency table is useful in determining the (a) mean (b) median (c) mode (d) all the above three measures Q.17:- Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (c) 3% (d) $\frac{17}{16}$ Q.18:- If $\sin\theta - \cos\theta = 0$, then the value of $(\sin^4\theta + \cos^4\theta)$ is (a) 1 (b) $\frac{3}{4}$ (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- LCM and HCF of p^2q and pq^2 is p^2q^2 and pq respectively. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) is false (d) Assertion (A) is false but reason (R) is true. Q.20:- Statement (A):- The mid-point of the line segment joining the points The coordinates of the mid-point of the line segment joining the points	Q.15:-		1
 Q.16:- Construction of a cumulative frequency table is useful in determining the (a) mean (c) mode (d) all the above three measures Q.17:- Which of the following cannot be the probability of an event? (a) 1/3 (b) 0.1 (c) 3% (d) 17/16 Q.18:- If sinθ - cosθ = 0, then the value of (sin⁴θ + cos⁴θ) is (a) 1 (b) 3/4 (c) 1/2 (d) 1/4 Q.19:- Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) is true but reason (R) is false (d) Assertion (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-6, -4) is (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points 			
(a) mean (c) mode (d) all the above three measures Q.17:- Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (b) 0.1 (c) 3% (d) $\frac{17}{16}$ Q.18:- If $\sin \theta - \cos \theta = 0$, then the value of $(\sin^4 \theta + \cos^4 \theta)$ is (a) 1 (b) $\frac{3}{4}$ (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false (d) Assertion (A) is false but reason (R) is true. Q.20:- Statement (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-6, -4) is (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points	Q.16:-	(*) * : V = ****	1
Q.17:- Which of the following cannot be the probability of an event? (a) $\frac{1}{3}$ (b) 0.1 (c) 3% (d) $\frac{17}{16}$ Q.18:- If $\sin\theta - \cos\theta = 0$, then the value of $(\sin^4\theta + \cos^4\theta)$ is (a) 1 (b) $\frac{3}{4}$ (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false (d) Assertion (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-6, -4) is (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points			
Q.18:- If $sin\theta - cos\theta = 0$, then the value of $(sin^4 \theta + cos^4 \theta)$ is (a) 1 (b) $\frac{3}{4}$ (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) is false but reason (R) is true. Q.20:- Statement (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-6, -4) is (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points			
Q.18:- If $sin\theta - cos\theta = 0$, then the value of $(sin^4\theta + cos^4\theta)$ is (a) 1 (b) $\frac{3}{4}$ (c) $\frac{1}{2}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- LCM and HCF of p^2q and pq^2 is p^2q^2 and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) is true but reason (R) is false (d) Assertion (A) is false but reason (R) is true. Q.20:- Statement (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-6, -4) is (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points	Q.17:-	1	1
Q.18:- If $sin\theta - cos\theta = 0$, then the value of $(sin^4\theta + cos^4\theta)$ is (a) 1 (b) $\frac{3}{4}$ (c) $\frac{1}{2}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- LCM and HCF of p^2q and pq^2 is p^2q^2 and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false (d) Assertion (A): The mid-point of the line segment joining the points A (-2, 8) and B (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points		(4) 3	
Q.18:- If $sin\theta - cos\theta = 0$, then the value of $(sin^4\theta + cos^4\theta)$ is (a) 1 (b) $\frac{3}{4}$ (c) $\frac{1}{2}$ Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- LCM and HCF of p^2q and pq^2 is p^2q^2 and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false (d) Assertion (A): The mid-point of the line segment joining the points A (-2, 8) and B (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points		(c) 3% (d) $\frac{17}{16}$	
Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- Reason (R): The LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false (d) Assertion (A) is false but reason (R) is true. Q.20:- Statement (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-1) Reason (R): The coordinates of the mid-point of the line segment joining the points	Q.18:-	If $\sin\theta - \cos\theta = 0$, then the value of $(\sin^4 \theta + \cos^4 \theta)$ is	1
Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- Reason (R): The LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false (d) Assertion (A) is false but reason (R) is true. Q.20:- Statement (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-1) Reason (R): The coordinates of the mid-point of the line segment joining the points		(a) 1 (b) $\frac{3}{4}$	
Assertion and Reason based questions DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- Reason (R): The LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false (d) Assertion (A) is false but reason (R) is true. Q.20:- Statement (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-1) Reason (R): The coordinates of the mid-point of the line segment joining the points		(c) $\frac{1}{2}$ (d) $\frac{1}{2}$	
DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false (d) Assertion (A) is false but reason (R) is true. Q.20:- Statement (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-1, -4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points		1	
by a statement of Reason (R). Choose the correct option Statement Q.19:- Statement (A):- LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false (d) Assertion (A) is false but reason (R) is true. Q.20:- Statement (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points			i l
Q.19:- Statement (A):- LCM and HCF of p²q and pq² is p²q² and p q respectively. Reason (R): The LCM of two numbers is always equal to their product. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false (d) Assertion (A) is false but reason (R) is true. Q.20:- Statement (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-6, -4) is (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points			-
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false (d) Assertion (A) is false but reason (R) is true. Q.20:- Statement (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-6, -4) is (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points	Q.19:-	Statement (A):- LCM and HCF of p ² q and pq ² is p ² q ² and p q respectively.	1
of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false (d) Assertion (A) is false but reason (R) is true. Q.20:- Statement (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-6, -4) is (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points			
(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false (d) Assertion (A) is false but reason (R) is true. Q.20:- Statement (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-6, -4) is (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points		=	on
explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false (d) Assertion (A) is false but reason (R) is true. Q.20:- Statement (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-6, -4) is (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points		` '	
(c) Assertion (A) is true but reason (R) is false (d) Assertion (A) is false but reason (R) is true. Q.20:- Statement (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-6, -4) is (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points			
Q.20:- Statement (A):- The mid-point of the line segment joining the points A (-2, 8) and B (-6, -4) is (-4, 2) Reason (R): The coordinates of the mid-point of the line segment joining the points		(c) Assertion (A) is true but reason (R) is false	
6, -4) is $(-4, 2)Reason (R): The coordinates of the mid-point of the line segment joining the points$	0.20		4
Reason (R): The coordinates of the mid-point of the line segment joining the points	Q.20:-		- 1
$P(x_1, y_1)$ and $Q(x_2, y_2)$ are $\frac{x_1 + x_2}{2}$, $\frac{y_1 + y_2}{2}$			ts
- \-1; J1 / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		$P(x_1, y_1)$ and $O(x_2, y_2)$ are $\frac{x_1 + x_2}{y_1 + y_2}$	
(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation			on
of assertion (A)			

	(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct	
	explanation of assertion (A)	
	(c) Assertion (A) is true but reason (R) is false	
	(d) Assertion (A) is false but reason (R) is true. SECTION B	
	Section B consists of 5 questions of 2 marks each.	
Q.21:-	For which value(s) of k will the pair of equations	2
	kx + 3y = k - 3	
0.22	And $12x + ky = k$ have no solution?	2
Q.22:-	In Fig., if PQ RS, prove that \triangle POQ \sim \triangle SOR	2
	P O S	
Q.23:-	In the fig PQ is common tangent to the given circles, which touch externally at C. If PT = 4 cm find the length of PQ.	2
	$A \cdot C \cdot B$	
Q.24:-	In Fig., AB is a diameter of the circle, AC = 6 cm and BC = 8 cm. Find the area of the shaded region (Use π = 3.14).	2
	OR	
	A cow is tied with a rope of length 14 m at the corner of a rectangular field of dimensions	
Q.25:-	20m × 16m. Find the area of the field in which the cow can graze. In a right triangle ABC, right-angled at B, if tan A = 1, then verify that 2 sin A cos A = 1. OR	2
	If $\sin(A - B) = \frac{1}{2}$, $\cos(A + B) = \frac{1}{2}$, $0^{\circ} < A + B \le 90^{\circ}$, $A > B$, find A and B.	
	$\frac{\text{If } \text{SIM}(X \cap B) - \frac{1}{2}, \text{ cos } (X \cap B) - \frac{1}{2}, \text{ or } (X \cap B) = \frac{1}{2}, \text{ or } (X $	
	Section C consists of 6 questions of 3 marks each.	
Q.26:-	Prove that $2 - 3\sqrt{5}$ is an irrational number.	3
Q.27:-	If α and β are the zeroes of the polynomial x^2 - 6x +8, find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$	3
Q.28:-	For which values of 'a' and 'b' will the following pair of linear equations have infinitely many solutions? x + 2y = 1 (a - b)x + (a + b)y = a + b - 2	3
	A railway half ticket costs half the full fare, but the reservation charges are the same on a half ticket as on a full ticket. One reserved first class ticket from the station A to B costs Rs 2530. Also, one reserved first class ticket and one reserved first class half ticket from A to B costs Rs 3810. Find the full first class fare from station A to B, and also the reservation charges for a ticket.	

Q.29:-	Simplify $(1 + \tan^2 \theta) (1 - \sin \theta) (1 + \sin \theta)$	3
Q.30:-	In figure PA and PB are tangents from P to the circle with centre O and Q is any point on the circle. If CD is tangent to	3
	the circle at Q, Prove that $PC + CQ = PD + DQ$	
	OR B D	
	In fig. AP and BP are tangents to a circle with centre O,	
	such that $AP = 6$ cm and $\angle APB = 60^{\circ}$. Find the length of chord AB .	
Q.31:-	In a game, the entry fee is Rs 5. The game consists of a tossing a coin 3 times. If one or two heads show, Sweta gets her entry fee back. If she throws 3 heads, she receives double the entry fees. Otherwise she will lose. For tossing a coin three times, find the probability that She	3
	(i) loses the entry fee.(ii) gets double entry fee.(iii) just gets her entry fee.	
	SECTION D	
	Section D consists of 4 questions of 5 marks each.	
Q.32:-	In the centre of a rectangular lawn of dimensions 50 m x 40 m, a rectangular pond has to be constructed so that the area of the grass surrounding the pond would be 1184 m2 [see Figure]. Find the length and breadth of the pond.	5
	OR In a flight of 2800km, an aircraft was slowed down due to bad weather. Its average speed for the trip was reduced by 100 km/hr from its usual speed and the time of the flight increased by 30 min. Find the scheduled duration of the flight.	
Q.33:-	In Fig., OB is the perpendicular bisector of the line	5
	segment DE, FA \perp OB and F E intersects OB at the point C. Prove that $\frac{1}{oA} + \frac{1}{oB} = \frac{2}{oC}$	
	A \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Q.34:-	A vessel is in the form of an inverted cone. Its height is 8 cm and the radius of its top which is open, is 5 cm. It is filled with water upto the brim. When lead shots, each of which is a sphere of radius 0.5 cm are dropped into the vessel, one-fourth of water flows out. Find the number of lead shots dropped into the vessel. OR	5
	A building has 25 cylindrical shaped poles. Each has a radius of 28 cm and a height of 4 cm.	
	Find the cost of painting curved surface of all poles at the rate of Rs. 8 per m ² .	
Q.35:-	A survey conducted on 20 households in a locality by a group of students resulted in the	5

	Family Size	1 – 3	3-5	5 – 7	7 – 9	9 – 11	1
	Number of families	7	8	2	2	1	
				lency.	so find the me	an using empirica	.1
		~		SECTION E			
.36:-	In a GPS, Th		•	sed questions are	compulsory		
	east-west are k latitude, and the north-south are of longitude. It the longitude of coordinates are formula is used distance between The distance parallel lines in 150 km. A fair Pradesh planner from Lucknow via Bhuj (B) are shown in the below. Based on information following quest coordinate geometry. (I). Find the distance parallel lines in 150 km. A fair Pradesh planner from Lucknow in the below.	nown as line lines rune known as The latitude of a place and the districted to find the two places approximated a round (L) to Pure do Nashik (let given for the answer stions using metry. Stance between the between the sanswer stions using metry. Stance between the between the sanswer stions using metry. Stance between the between the between the sanswer stions using metry.	es of aning lines e and re its tance the aces. two ately Uttar trip ri (P) N) as igure bove the g the divide t	13 A A A A A A A A A A A A A A A A A A A	Towns of 7 8 9 Towns of 7 8 9	10 11 12 X	1 1 2
	1 uii (1).			[OR]			
	Find a place (p Lucknow (L) a		_	y-axis) which is e	quidistant from	the points	
2.37:-	26% in the co company plans that the produc Based on the al (i) Fin	rresponding and to produce to produce to produce to the produce to the produce the produce to the produce the prod	quarter of uced 1800 of ed by a fix partion answertion in the	2021-22, as percars in 4 th year arounder every year er the following quarter the follo	our report. And 2006 cars in r.	n India increased by care manufacturing 8 th year. Assuming	g g l
			ction in 12 th production i	year. n first 10 year			$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$

KENDRIYA VIDYALAYA SANGATHAN, JAMMU REGION SAMPLE PAPER SET-8


CLASS-X SUBJECT- MATH (Std)

TIME: 3 HOURS M.M- 80

General Instructions:

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section **B** has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section **D** has 4 questions carrying 05 marks each.
- 6. Section **E** has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

	SECTION A	
	Section A consists of 20 questions of 1 mark each.	
S.		M
NO		A
		R
		K
		S
1	Every positive odd integer of the form:	1
	(a) $2m$ (b) $m(C) 2m-1(d) 2m+1$	
2	Which of the following equations has the sum of its roots as 3?	1
	(a) $2x^2 - 3x + 6 = 0$ (b) $-x^2 + 3x - 3 = 0$ (c) $\sqrt{2}x^2 - 3/\sqrt{2}x + 1 = 0$ (d) $3x^2 - 3x + 3 = 0$	
3	If one of the zeroes of the quadratic polynomial $(k-1)x^2 + kx + 1$ is -3 , then the value of k is	1
	(a) $4/3$ (b) $-4/3$ (c) $2/3$ (d) $-2/3$	
4	If $1/2$ is a root of the equation $x^2 + kx - 5/4 = 0$, then the value of k is	1
	(a) 2 (b) -2 (c) 14 (d) 12	
5	If in two triangles ABC and PQR, AB/ QR=BC/ PR=CA/ PQ then	1
	(a) $\triangle PQR \sim \triangle CAB$ (b) $\triangle PQR \sim \triangle ABC$ (c) $\triangle CBA \sim \triangle PQR$ (d) $\triangle BCA \sim \triangle PQR$	
6	It is given that $\triangle ABC \sim \triangle DFE$, $\angle A = 30^{\circ}$, $\angle C = 50^{\circ}$, $AB = 5$ cm, $AC = 8$ cm and $DF = 7.5$ cm. Then,	1
	the following is true:	
	(a) DE= 12 cm, \angle F= 50° (b) DE= 12 cm, \angle F= 100°(c) EF= 12 cm, \angle D = 100°(d) EF= 12 cm, \angle D =	
	30°	
7	In the figure, two line segments AC and BD intersect each other at the point P such that $PA = 6$ cm,	1
	PB = 3 cm, PC = 2.5 cm, PD = 5 cm, \angle APB = 50° and \angle CDP = 30°. Then, \angle PBA is equal to	

17	If P (A) denotes the probability of an event A, then	1
17		1
18	(a) $P(A) \le 0$ (b) $P(A) \ge 1$ (c) $0 \le P(A) \le 1$ (d) $-1 \le P(A) \le 1$ If $\triangle ABC$ is right angled at C, then the value of $\cos (A+B)$ is	1
10	(A) 0 (B) 1	1
	(C) $\frac{1}{2}$ (D) $\frac{\sqrt{3}}{2}$	
	2 2	
	DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a	1
	statement of Reason (R). Choose the correct option	
19	Statement A (Assertion): A number N when divided by 15 gives the remainder 2. Then the	
	remainder is same when N is divided by 5.	
	Statement R (Reason) : $\sqrt{3}$ is an irrational number.	
	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion	
	(A).	
	(b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of	
	Assertion (A).	
	(c) Assertion (A) is true but Reason (R) is false.	
	(d) Assertion (A) is false but Reason (R) is true.	
20	Statement A (Assertion): The points (-4, 0), (4, 0) and (0, 3) are the vertices of a isosceles triangle	1
	Statement R (Reason): An isosceles triangle has two sides equal.	
	(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion	
	(A).	
	(b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of	
	Assertion (A).	
	(c) Assertion (A) is true but Reason (R) is false.	
	(d) Assertion (A) is false but Reason (R) is true.	
	SECTION B	
	Section B consists of 5 question of 2 marks each	
21	Solve for x and y:- $x-y+1 = 0$; $4x + 3y - 10 = 0$	2
22		
22	In the figure if AB DC and AC and PQ intersect each other at the point O, prove that OA. CQ = OC	2
	. AP.	
	A P B	
	/ /	
	D	
22	- Q	
23	In figure, if PQR is the tangent to a circle at Q whose centre is O, AB is a chord parallel to PR and	2
23	In figure, if PQR is the tangent to a circle at Q whose centre is O, AB is a chord parallel to PR and $\angle BQR = 70^{\circ}$, then $\angle AQB$ is equal to	2
23		2
23		2
23		2
23		2
23		2
23		2

24	Find the area of a sector of a circle of radius 28 cm and central angle 45°.	2
	OR The wheel of a motor cycle is of radius 35 cm. How many revolutions per minute must the wheel	
	make, so as to keep a speed of 66 km/h?	
25	If $\sqrt{3} \tan \theta = 1$, then find the value of $\sin^2 \theta - \cos^2 \theta$.	2
	OR	
	If $\sin\theta - \cos\theta = 0$, then the value of $(\sin^4\theta + \cos^4\theta)$?	
	SECTION C	
	Section C consists of 6 question of 3 marks each	
26	To prove Prove that $\sqrt{3} + 2$ is irrational	3
27	If α and β are the zeros of $x^2 + 7x^2 + 12$ then find the value of $1/\alpha + 1/\beta - 2\alpha\beta$	3
28	A two-digit number is obtained by either multiplying the sum of the digits by 8 and then subtracting 5	3
	or by multiplying the difference of the digits by 16 and then adding 3. Find the number. OR	
	Vijay had some bananas and he divided them into two lots A and B. He sold the first lot at the rate of	
	₹ 2 for 3 bananas and the second lot at the rate of ₹ 1 per banana and got a total of ₹ 400 If he had sold	
	the first lot at the rate of ₹ 1 per banana and the second lot at the rate of ₹ 4 for 5 bananas, his total	
	collection would have been ₹ 460. Find the total nmber of bananas he had.	
29	Given that $\sin\theta + 2\cos\theta = 1$, then prove that $2\sin\theta - \cos\theta = 2$.	3
30	If AB is a chord of a circle with centre O, AOC is a diameter and AT is the tangent at A as shown in figure. Prove that $\angle BAT = \angle ACB$	3
	· c	
	(o))B	
	A T	
	OR	
	If a hexagon ABCDEF circumscribe a circle, prove that $AB + CD + EF = BC + DE + FA$.	
31	Two dice are thrown together. Find the probability that the product of the numbers on the top of the	3
	dice is	
	(i) 6	
	(ii) 12	
	(iii) 7	
	SECTION D	
	Section D consists of 4 question of 5 marks each	
32	Two water taps together can fill a tank in $9\frac{3}{8}$ hours. The tap of larger diameter takes 10 hours less than	5
	the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.	
	OR	
	A train, travelling at a uniform speed for 360 km, would have taken 48 minutes less to travel the same	
22	distance if its speed were 5 km/h more. Find the original speed of the train	
33	0 is the point of intersection of the diagonals AC and BD of a trapezium ABCD with AB DC.	5

	Through 0, a l	ine segment PQ	is drawn parallel	to AB meeting AD in P and BC in Q, prove that PO =	
	QO.	_	_		
34	A factory man	ufactures 12000	00 pencils daily. T	The pencils are cylindrical in shape each of length 25	5
	cm and circun	nference of base	as 1.5 cm. Determ	mine the cost of colouring the curved surfaces of the	
	pencils manuf	actured in one d	ay at ₹ 0.05 per d	m^2 .	
				OR	
	500 persons as	re taking a dip ir	nto a cuboidal por	nd which is 80 m long and 50 m broad. What is the rise	
	of water level	in the pond, if the	he average displa	cement of the water by a person is 0.04 m ³ ?	
35				ne following distribution of heights of students in a	5
	class				
	Height(in	frequency	Cumulative		
	cm)		frequency		
	150-155	12	a		
	155-160	b	25		
	160-165	10	c		

50		

43

48

f

165-170

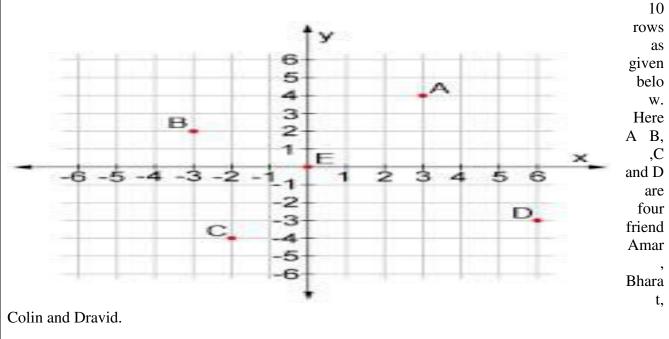
170-175

175-180

d

e

2


50

SECTION E

Case study based question are compulsory

Morning assembly is an integral part of the school's schedule. Almost all the schools conduct morning assemblies which include prayers, information of latest happenings, inspiring thoughts, speech, national anthem, etc The positive effects of attending school assemblies can be felt throughout life. Have you noticed that in school assembly you always stand in row and column and

this make a coordinate system. Suppose a school have 100 students and they all assemble in prayer in

- (i) What is the distance between A and B?(ii) Is the distance between A and C is same as of distance between A and B?
- (iii)Determine the type of quadrilateral formed by these 4 friends seating arrangement .

OR

If Amar has to give badges to other two friends Bharat andDravid respectively and again returns to his position what total distance hecovers?

Kanika was given her pocket money on Jan 1st, 2008. She puts ₹ 1 on Day 1, ₹ 2 on Day 2, ₹ 3 on Day 3, and continued doing so till the end of the month, from this money into her piggy bank. She also spent ₹ 204 of her pocket money and found that the end of the month she still had ₹ 100 with her.

i) What is the first term and common difference?

38

ii) How much was her pocket money for the month?

OR

How much money she has in her piggy bank?

iii) What is the sum of money spent and money left with Kanika?

A hot air ballon is flying in the sky just above the building the children looking from the window to the baloon. The lower window of a house is at a height of 2 m above the ground and its upper window

1

1

is 4 m vertically above the lower window

. At certain instant the angles of elevation of a balloon from these windows are observed to be 60° and 30° , respectively.

- (i) Draw a neat labeled figure to show the above situation diagrammatically.
- (ii) Find the height of the balloon above the ground

Or

Find the horizontal distance of the building to from the balloon

iii)What is the distance between lower window to balloon

1 2

KENDRIYA VIDYALAYA SANGATHAN, JAMMU REGION

SAMPLE PAPER SET- 9

CLASS - X

SUBJECT- MATHS (STD)

TIME – 3 HOURS

M.M-80 MARKS

General Instructions:

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

SECTION - A

DECITOR II	
If one zero of the quadratic polynomial $x^2 + 3x + k$ is 2, then the value of k is (a) 10 (b)-10 (c) -7 (d)2	1
The number 3 ¹³ -3 ¹⁰ is divisible by	1
(a) 2 and 3 (b) 3 and 10 (c) 2, 3 and 10 (d) 2, 3 and 13	
LCM of two numbers is 2400. Which of the following cannot be their HCF (a) 300 (b)400 (c) 500 (d) 600	1
If $x = a$ and $y = b$ is the solution of the equations $x - y = 2$ and $x + y = 4$, then the values of a and b are, respectively (a) 3 and 5 (b) 5 and 3 (c) 3 and 1 (d) - 1 and 3	1
The quadratic equation $x^2 + x - 5 = 0$ has (a) two distinct real roots (b) two equal real roots (c) no real roots (d) more than 2 real roots	1
	value of k is (a) 10 (b)-10 (c) -7 (d)2 The number 3^{13} - 3^{10} is divisible by (a) 2 and 3 (b) 3 and 10 (c) 2, 3 and 10 (d) 2, 3 and 13 LCM of two numbers is 2400. Which of the following cannot be their HCF (a) 300 (b) 400 (c) 500 (d) 600 If $x = a$ and $y = b$ is the solution of the equations $x - y = 2$ and $x + y = 4$, then the values of a and b are, respectively (a) 3 and 5 (b) 5 and 3 (c) 3 and 1 (d) -1 and 3 The quadratic equation $x^2 + x - 5 = 0$ has (a) two distinct real roots (b) two equal real roots (c) no real roots

6.	C is the mid-point of PQ, if P is (4,x) C is (y,-1) and Q	1
	is $(-2,4)$ then x and y respectively are	
	(a) -6 and 1 (b) -6 and 2	
	(c) 6 and -1 (d) 6 and -2	
7.	1 1	1
,,	If $\sin \alpha = \frac{1}{2}$ and $\cos \beta = \frac{1}{2}$ then the value of $\alpha + \beta$ is	1
	(a) 0° (b) 30° (c) 60° (d) 90°	
8.	(Sin 30° +cos 60°)-(sin 60° + cos 30°) is equal to:	1
	(a) 0	
	(b) $1+2\sqrt{3}$	
	(c) 1-√3	
	(d) $1+\sqrt{3}$	
9.	If $\triangle ABC$ is right angled at C, then the value of $\cos(A+B)$ is	1
	(a) 0	
	(b) 1	
	(c) 1/2	
	(d) $\sqrt{3/2}$	
10.	A chord of a circle of radius 10 cm, subtends a right angle at its centre. The length of the chord (in cm) is	1
	(a) $\frac{5}{\sqrt{2}}$ (b) $5\sqrt{2}$ (c) $10\sqrt{2}$ (d) $10\sqrt{3}$	
11.	In a triangle ABC, DE II BC, find the value of x . AD=x, BD= X+1 ,AE= x+3 ,CE=x+5	1
	A	
	DE	
	В С	

	(a) 2		(b) 5		(c) 10		(d) 3	
12.		celes triar les are sin				ateral are	similar.	1
13.	Find the are	ea of circle	that can b	e inscribe	d in a squa	re of side	10 cm.	1
	(a) 25π (d) 5	sq cm 0 sq cm	(b)	50π sq cn	1	(c) 2	5 sq cm	
14.	The region	enclosed b	y an arc ar	nd a chord	is called			1
	(a) A se	ctor(b) A	segment (c) A semi -	circle	(d) dia	ameter	
15.	During conv		a solid fror	m one shap	e to anoth	er, the vol	ume of the	1
	(a) increase be doubled		ecrease	(c)	remain un	altered	(d)	
16.	Consider the following frequency distribution of the heights of 60 students of a class Height (in cm)							
	Height in CM	150-155	155-160	160-165	165-170	170-175	175-180	
	NO. of students	15	13	10	8	9	5	
	The upper l	imit of the	e median cl	ass in the ş	given data	is		
	(a) 165 (b)							
17.	If median is			ŕ			307.00	1
	(a) 156.90	(b)	136.90	((e) 186.90	(a) 2	206.90	
18.	The probab 3,, 15 is	-		elected at 1	andom fro	om the nui	mbers 1, 2,	1
	$(a)^{\frac{2}{15}}(b)^{\frac{1}{5}}(c)$	$(2) \frac{1}{15} (d) \frac{1}{3}$						

	is followed by a statement of Reason . Choose the correct option	
	19. Assertion: The HCF of two numbers is 5 and their product is 150, then their LCM is 30	
	Reason: For any two positive integers a and b, HCF (a,b) X LCM $(a,b) = a \times b$.	
	(a) Both assertion and reason are true and reason is the correct explanation of assertion	
	(b) Both assertion and reason are true but reason is not the correct explanation of assertion .	
	(c) Assertion is true but reason is false.	
	(d) Assertion is false but reason is true	
20.	Assertion :The distance point P(2,3) from the x-axis is 3.	1
	Reason: The distance from x-axis is equal to its ordinate	
	a.) Both Assertion and Reason are correct and Reason is the correct explanation for Assertion	
	b.) Both Assertion and Reason are correct and Reason is not the correct explanation for Assertion.	
	c.) assertion is true but the reason is false.	
	d.) both assertion and reason are false	

$\underline{SECTION-B}$

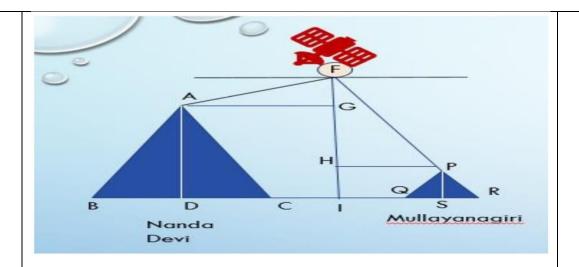
21	The combined ages of two people is 34 .If one person is 6 year younger than the other, then find their ages	2
22.	Find the value of $\cos 2\theta$, if $2\sin 2\theta = \sqrt{3}$ OR Evaluate: $\frac{\cos 45^{\circ}}{\sec 30^{\circ}} + \frac{1}{\sec 60^{\circ}}$	2
23.	Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.	2
24.	Find the area of shaded region	2

	12 cm	
	OR	
	The length of minute hand of a clock is 14 cm . F ind the area swept by the minute hand in 5 min .	
25.	ABCD is a trapezium with AB I I DC . E and F are points on non parallel sides AD and BC respectively such that EF is parallel to AB . Show that $\frac{AE}{ED} = \frac{BF}{FC}$.	2

SECTION – C

26.	Prove that $\sqrt{5} + \sqrt{3}$ is an irrational number.	3
27.	Find the zeroes of the quadratic polynomial $x^2 - 3$ and verify the	3
	relationship between the zeroes and the coefficients.	
28.	In an election contested between A and B, A obtained votes equal to twice the no. of persons on the electoral roll who did not cast their votes and this later number was equal to twice his majority over B. If there were 1,8000 persons on the electoral roll. How many votes for B. OR Draw the graphs of the pair of linear equations: x +2y = 5 and 2x -3y - =- 4 Also find the points where the lines meet the x -axis.	3

29.	Prove that: Prove that $\sqrt{\frac{1+\sin x}{1-\sin x}} = \sec x + \tan x$	3
	$\sqrt{1-\sin x}$	
	$\frac{\cos A}{1 - \tan A} + \frac{\sin A}{1 - \cot A} = \sin A + \cos A$	
30.	In the below figure, O is the centre of a circle of radius 5cm.T is a point such that OT=13cm and OT intersects circle at E. If AB is a tangent to the circle at E, find the length of AB, where TP and TQ are two tangents to the circle.	3
	OR In the given figure, OP is equal to the diameter of a circle with centre O and PA and PB are tangents. Prove that ABP is an equilateral	
	triangle. P B	
31.	All red face cards are removed from a pack of playing cards. The remaining cards are well shuffled and then a card is drawn at random from them. Find the probability that the drawn card is: (i) a red card (ii) a face card (iii) a card of	3

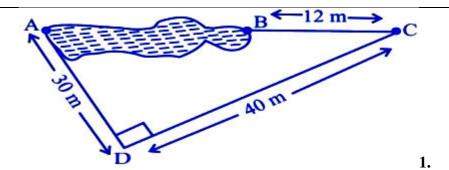

SECTION - D

32.	An express train takes 1 hour less than a passenger train to travel 132 km between Mysore and Bangalore (without taking into consideration the time they stop at intermediate stations). If the average speed of the express train is 11km/h more than that of the passenger train, find the average speed of the two trains.				5
	[OR]				
	go 24 km		_	h/h in still water takes 1 hour more to	
33.	State and pr	ove basic	proportional	ity theorem	5
34.	A solid is in the form of a cylinder with hemispherical end. The total height of the solid is 20 cm and the diameter of the cylinder is 7 cm. Find the total volume of the solid. (Use π = 22/7) OR There are two identical solid cubical boxes of side 7cm. From the top face of the first cube a hemisphere of diameter equal to the side of the cube is scooped out. This hemisphere is inverted and placed on the top of the second cube's surface to form a dome. Find (i) the ratio of the total surface area of the two new solids formed (ii) volume of each new solid formed.			5	
35.	The median of the following data is 525. Find the values of x and y, if the total frequency is 100				5
		Class nterval	Frequency		
	0	-100	2		
	1	00-200	5		
	2	00-300	X		
	3	00-400	12		
	4	00-500	17		
	5	00-600	20		

600-700	y
700-800	9
800-900	7
900-1000	4

$\underline{SECTION-E}$

36.	Ragav wants to participate in a 200 m race .he can currently run that distance in 51 s and with each day of practice it takes him 2 s less. He wants to do in 31s	(1+1+2)
	(i) Which of the following terms are in AP for the given situation ii) what is the minimum number of days he needs to practice till his goal is achieved	
	iii) Which of the following term is not in the AP of the above given situation OR	
	iii) if nth term of an AP is given by $a_n = 2n+3$, then commom difference of an AP is	
37	A Satellite flying at height h is watching the top of the two tallest mountains in Uttarakhand and Karnataka ,them being Nanda Devi(height 7,816m) and Mullayanagiri (height 1,930 m). The angles of depression from the satellite , to the top of Nanda Devi and Mullayanagiri are 30°° and 60° respectively. If the distance between the peaks of two mountains is 1937 km, and the satellite is vertically above the midpoint of the distance between the two	(1+1+2)


- 1. The distance of the satellite from the top of nanda devi is
- 2. The distance of the satellite from the top of Mullayangiri is
- 3. What is the angle of elevation if a man is standing at a distance of 7816 m form NANDA DEVI

OR

- 3. If a mile stone very far away from ,makes 45° to the top of mullayangiri mountain. So ,find the distance of this mile stone from the mountain.
- Rohan wants to measure the distance of a pond during the visit to his native. He marks points A and B on the opposite edges of a pond as shown in the figure below. To find the distance between the points, he makes a right-angled

triangle using rope connecting B with another point C are a distance of 12m, connecting C to point D at a distance of 40m from point C and the connecting D $\,$

to the point A which is are a distance of 30m from D such the < ADC=90°

- 1. Which property of geometry will be used to find the distance AC?
- 2. What is the distance AC?
- 3. Find the length AB?

OR

4. Find the length of the rope used.

KENDRIYA VIDYALAYA SANGATHAN, JAMMU REGION SAMPLE PAPER SET- 10

CLASS – X TIME – 3 HOURS SUBJECT- MATHS (STD) M.M. 80 MARKS

General Instructions:

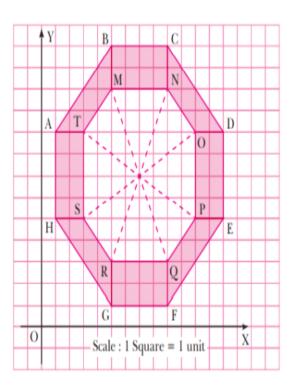
- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section **B** has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section **D** has 4 questions carrying 05 marks each.
- 6. Section **E** has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

	SECTION A	
	Section A consist of 20 questions of 1 mark each.	
Q.N o.		Ma rks
1	In the fig. two concentric circles of radii a and b (a > b) are given. The chord AB of larger circle touches the smaller circle at C. Find the length of AB.	1
	(a) $2\sqrt{b^2 - a^2}$ (b) $2\sqrt{a^2 - b^2}$ (c) $2\sqrt{a^2 - 2b^2}$ (d) $2\sqrt{2a^2 - b^2}$	1
2	Equation of $(x+1)^2-x^2=0$ has number of real roots equal to: (a) 1(b) 2(c) 3(d) 4	
3	If one zero of the quadratic polynomial $x^2 + 3x + k$ is 2, then the value of k is (a) $10(b) - 10(c) 5(d) - 5$	1

4	If the system of equations $3x+y=1$ and $(2k-1)x+(k-1)y=2k+1$ is inconsistent, then $k=(a)-1(b)\ 0(c)\ 1(d)\ 2$	1
5	The distance of the point (α, β) from the origin is (a) $\alpha + \beta(b) \alpha^2 + \beta^2(c) \alpha + \beta (d)$ NONE OF THE ABOVE	1
6	A cylinder and a cone are of same base radius and of same height. The ratio of the volume of the cylinder to that of the cone is (a) 2: 1(b) 3: 1(c) 2: 3(d) 3: 2	1
7	The value of the expression $\sin^6\theta + \cos^6\theta + 3\sin^2\theta\cos^2\theta$ is	1
	(a) 0(b) 3(c) 2(d) 1	
8	If Sin 30° +cos 60°)-(sin 60° + cos 30°) is equal to:	1
	(a) $0(b) 1+2\sqrt{3}(c) 1-\sqrt{3}(d) 1+\sqrt{3}$	
9	If in two triangles ABC and DEF, $\frac{AB}{DF} = \frac{BC}{FE} = \frac{CA}{ED}$, then (a) \triangle ABC $\sim \triangle$ DEF(b) \triangle ABC $\sim \triangle$ EDF (c) \triangle ABC $\sim \triangle$ EFD(d) \triangle ABC $\sim \triangle$ DFE	1
10	Three numbers are in the ratio of 3:4:5 and their L.C.M. is 2400. Their H.C.F. is:	1
11	(a)40 (b) 80 (c) 120 (d)200 A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O	1
11	ata point Q so that OQ = 12 cm. Length PQ is:	1
	(a) 12 cm(b) 13 cm(c) 8.5 cm(d) $\sqrt{119}$ cm	
12	LCM of the given number 'x' and 'y' where y is a multiple of 'x' is given by (a) x(b) y(c) xy(d) xy	1
13	The curved surface of the cylinder is 88 cm ² . The height of the cylinder is 5 m, what is the radius of the cylinder? (a) 6 cm (b) 0.48 cm (c) 1 cm (d) 0.028 cm	1
14	Mode and mean of a data are 12k and 15k. Median of the data is (a) 12k(b) 14k(c) 15k(d) 16k.	1
15	The perimeter of a sector of radius 5.2 cm is 16.4 cm, the area of the sector is (a) 31.2 cm ² (b) 15 cm ² (c) 15.6 cm ² (d) 16.6 cm ²	1
16	For the following distribution:	1

				1
	C.I.	f		
	0-5	10		
	5-10	15		
	10-15	12		
	15-20	20		
	20-25	9		
the difference of the upper class is (a) 0(b) 5(c) 10(d) -5	limit of the me	edian class and th	ne lower limit of the modal	
one die and an odd number on the other die?				1
				1
DIRECTION: In the question number 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement AAssertion: The H.C.F. of two numbers is 16 and their product is 3072. Then their L.C.M. = 162.			1	
 a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason(R) is false. (d) Assertion (A) is false but reason(R) is true 				
2, 4), then x and y respect	ively are -6 and	1.	·	1
Statement RReason: The mid-point of the line segment joining the points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$				
	class is (a) 0(b) 5(c) 10(d) -5 If two dice are thrown tog one die and an odd number (a)1/4(b)3/5(c)3/4(d)1. If cos X = a/b, then sin X (a)(b²-a²)/b(b) (b-a)/b (c) √(b²-a²)/b(d) √(b-a)/b DIRECTION: In the quant followed by a statement of the Choose the correct option. Statement AAssertion: Then their L.C.M. = 162. Statement RReason:If a and an of assertion (A) (b) Both assertion (A) (c) Assertion (A) is true by (d) Assertion (A) is true by (d) Assertion (A) is false by the statement AAssertion: Captalog (Captalog) (A) (b) Both assertion (A) (b) Both assertion (A) is true by (d) Assertion (A) is false by (d) Assertion (A) is false by the statement AAssertion: Captalog (Captalog) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	10-15 15-20 20-25 the difference of the upper limit of the meclass is (a) 0(b) 5(c) 10(d) -5 If two dice are thrown together, what is to one die and an odd number on the other decay (a) 1/4(b) 3/5(c) 3/4(d) 1/2 If cos X = a/b, then sin X is equal to: (a) (b²-a²)/b(b) (b-a)/b (c) √(b²-a²)/b(d) √(b-a)/b DIRECTION: In the question number of followed by a statement of Reason (R). Choose the correct option Statement AAssertion: The H.C.F. of two Then their L.C.M. = 162. Statement RReason: If a and b are two performs assertion (A) (b) Both assertion (A) and reason (R) are explanation of assertion (A) (c) Assertion (A) is true but reason(R) is explanation of assertion (A) is true but reason(R) is explanation (A) is false but reason(R) is explanation (A) is false but reason(R) is second to the correct option (A) is false but reason(R) is explanation (A) is	the difference of the upper limit of the median class and the class is (a) 0(b) 5(c) 10(d) -5 If two dice are thrown together, what is the probability of one die and an odd number on the other die? (a)1/4(b)3/5(c)3/4(d)1/2 If cos X = a/b, then sin X is equal to: (a)(b²-a²)/b(b) (b-a)/b (c) √(b²-a²)/b(d) √(b-a)/b DIRECTION: In the question number 19 and 20, a state followed by a statement of Reason (R). Choose the correct option Statement AAssertion: The H.C.F. of two numbers is 16 Then their L.C.M. = 162. Statement RReason:If a and b are two positive integers, and Both assertion (A) (and reason (R) are true and reason (R) assertion (A) (b) Both assertion (A) and reason (R) are true and reason (C) assertion (A) is true but reason(R) is false. (c) Assertion (A) is true but reason(R) is false. (d) Assertion (A) is false but reason(R) is true Statement AAssertion: C is the mid-point of PQ, if P is (2, 4), then x and y respectively are -6 and 1.	the difference of the upper limit of the median class and the lower limit of the modal class is (a) 0(b) 5(c) 10(d) -5 If two dice are thrown together, what is the probability of getting an even number on one die and an odd number on the other die? (a) 1/4(b) 3/5(c) 3/4(d) 1/2 If cos X = a/b, then sin X is equal to: (a) (b²-a²)/b(b) (b-a)/b (c) √(b²-a²)/b(d) √(b-a)/b DIRECTION: In the question number 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement AAssertion: The H.C.F. of two numbers is 16 and their product is 3072. Then their L.C.M. = 162. Statement RReason:If a and b are two positive integers, then H.C.F. × L.C.M.= a × b. a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) is true but reason(R) is false. (c) Assertion (A) is true but reason(R) is false. (d) Assertion (A) is true but reason(R) is false. Statement AAssertion: C is the mid-point of PQ, if P is (4, x), C is (y,-1) and Q is (-2, 4), then x and y respectively are -6 and 1. Statement RReason:The mid-point of the line segment joining the points P(x ₁ , y ₁)

	a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)					
	(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A)					
	$\frac{x^2+\frac{2}{3}}{x^2+\frac{2}{3}}$ y = -1 and x $-\frac{1}{3}$ y = 3(c) Assertion (A) is true but reason(R) is false.					
	(d) Assertion (A) is false but reason(R) is true					
	SECTION B					
	Section B consists of 5 questions of 2 marks each.	_				
21	solve for x and y by elimination method.	2				
22	If a line intersects sides AB and AC of a triangle ABC at D and E, respectively and is parallel to BC, prove that AD/AB = AE/AC.	2				
23	In the given figure, O is the centre of a circle, AB is a chord and AT is the tangent at A. If $\angle AOB = 100^{\circ}$, then calculate $\angle BAT$.	2				
	$\bigcirc \bigcirc $					
24	Find the area of the major segment APB, in the figure of a circle of radius 35 cm and $\angle AOB = 90^{\circ}$. (Use $\pi = 22/7$)	2				
	O B					
	OR					
	The length of the minute hand of a clock is 14 cm. Find the area swept by the					
	minutehand in 5 minutes.					
25	If $tan(A+B) = 1$ and $tan(A-B) = \sqrt{3}$, $0^{\circ} < A+B \le 90^{\circ}$ and $A > B$, then find the measures of angles A and B. OR Find an acute angle θ when $\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} = \frac{1-\sqrt{3}}{1+\sqrt{3}}$	2				


	SECTION C	
	Section C consists of 6 questions of 3 marks each.	
26	Given that $\sqrt{2}$ is irrational, prove that $3+5\sqrt{2}$ is irrational.	3
27	α and β are the zeroes of the polynomial $6y^2 - 7y + 2$, find a quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$	3
28	A train travelled 240 km at a certain speed. When the engine was replaced by an improved model, the speed was increased by 20 km/hr and the travel time for the trip was decreased by 1 hr. What was the rate of each engine?	3
	OR The product of the ages of Cally and Katty is 130 less than the product of their ages in 5 years. If Cally is 3 years older than Katty, what are their current ages?	
29	Prove that: $\frac{\cos \theta}{(1 - \tan \theta)} + \frac{\sin \theta}{(1 - \cot \theta)} = \sin \theta + \cos \theta$	3
30	A quadrilateral ABCD is drawn to circumscribe a circle as shown in the figure. Prove that AB + CD = AD+BC OR Let s denote the semi-perimeter of a triangle ABC in which BC = a, CA = b, AB = c. If a circle touches the sides BC,CA, AB at D, E, F, respectively, prove that BD = s - b.	3
31	One card is drawn at random from a well-shuffled deck of 52 playing cards. Find the probability that the card drawn is (i) either a red card or a king, (ii) (ii) neither a red card nor a queen.	3
	SECTION D	
	Section D consists of 4 questions of 5 marks each.	
32	Aryan covers a distance of 1 km from A to B. While returning, his speed is 3 km/hr more than first half of the journey. The total time taken for the journey is 0.5hr. Find the speed for the first half and second half of the journey. OR	5

	The area of a rectangle is 84 Find the length of both side	•	longer side is 5	units more than the shorter side.	
33	ABCD is a trapezium with \triangle AED \sim \triangle BEC. Prove the		nich diagonals A	AC and BD intersect at E and	5
34	Due to heavy floods in collectively decided to p whole expenditure equally 2.8 m and height 3.5 m a height 2.1 m. If the canva shared by each school to	n a state, thouserovide place y. The lower parend the upper parend to make to set up the tents.	and the canvas at of each tent is rt is conical with the tents costs R OR es of side 7cm of the side	ndered homeless. 50 schools for 1500 tents and share the scylindrical with base radius the same base radius, but of the same the same base radius, but of the same the same base radius	5
	(i) the ratio of the total su	rface area of the	two new solids	s formed	
	(ii) volume of each ne	w solid formed			
35				ntion are as Rs 33.5 and Rs 34	5
	resp. Three frequency val		No. of	ng frequencies.	
		Wages			
			persons		
		0-10	4		
		10-20	16		
		20-30	X		
		30-40	y		
		40-50	Z		
		50-60	6		
		60-70	4	-	
		total	230	_	
		OF	COLONE		
	Case study based question		CCTION E	ection carry 1 marks	
36		_		e that's perfect for small, cozy	
	_		_	than any other table shape. In	
					<u> </u>

anyone's home, a busy place is usually the dining or kitchen area.

The top of a table is shown in the figure given below:

Based on the above information, answer the following questions.

2

- i) The coordinates of the points H and G are respectively
- ii) If G is taken as the origin, and x, y axis put along GF and GB, then the point denoted by coordinate (4, 2) is

OR

The distance between the points A and B is

iii) The coordinates of the mid point of line segment joining points M and Q are

37

In a class the teacher asks every student to write an example of A.P. Two friends Geeta and Madhuri writes their progressions as -5, -2, 1,4, ... and 187, 184, 181, respectively. Now, the teacher asks various students of the class the following questions on these two progressions.

1

_

1

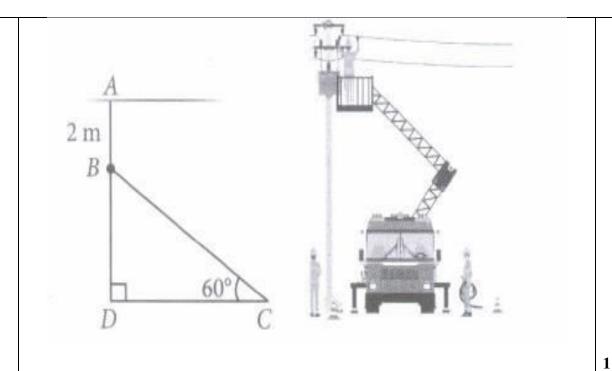
Based on the above information, help students to find the answers of the following questions.

1

2

1

- i) Find the 34th term of the progression written by Madhuri.
- ii) Find the sum of common difference of the two progressions.


OR

Find the 19th term of the progression written by Geeta.

iii) Which term of the two progressions will have the same value?

Electricians are responsible for inspecting, testing, repairing, installing, and modifying electrical components and systems. Electricians general work at homes, businesses, and construction sites, and generally work as contractors.

An electrician has to repair an electric fault on the pole of height of 8 m. He needs to reach a point 2 m below the top of the pole to undertake the repair work.

Based on the above information, answer the following questions.

- i) Length of BD is?
- ii) What should be the length of ladder, so that it makes an angle of 60° with the ground?

OR

2

1

The distance between the foot of ladder and pole is?

iii) What will be the measure of ∠BCD when BD and CD are equal?

KENDRIYA VIDYALAYA SANGATHAN, JAMMU REGION SAMPLE PAPER SET- 11

CLASS – X TIME – 3 HOURS SUBJECT- MATHS (STD) M.M- 80 MARKS

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section **B** has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section **D** has 4 questions carrying 05 marks each.
- 6. Section **E** has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

	SECTION A	
	Section A consist of 20 questions of 1 mark each.	
Q. No		Ma rks
1	The minute hand of a clock is 42cmlong. The distance covered by the tip of the minute	1
	hand from 10:10 am to 10:25 am is	
	a) 44 cm b) 88cm c) 132cm d) 176cm	
2	and $\frac{1}{2}$ are the zeroes of px ² +5x+r, then	1
	a) $p=r=2$ b) $p=r=-2$ c) $p=2, r=-2$ d) $p=-2, r=2$	
3	The probability of an event that is sure to happen, is	1
	a) 1 b) 1/3 c) 0 d)1/2	
4	The roots of the equation $x^2+x-p(p+1)=0$ are	1
	a) p,p+1 b) -p,p+1 c) p,-(p+1) d) -p,-(p+1)s	
5	The distance of the point $P(2,3)$ from the x-axis is:	1
	a) 2 b)3 c) 1 d)5	
6	The value of k for which the lines $5x+7y=3$ and $15x+21y=k$ coincide is	1
	a) 9 b) 5 c) 7 d) 18	
7	AOBC is a rectangle whose three vertices are $A(0,-3)$, $O(0,0)$ and $B(4,0)$. The length of	1
	the diagonal is ?	
	a) 3cm b) 5cm c) 4 cm d) 2cm	
8	The value of A, for $\sin 2A=1$, where $0^{\circ} < A < 90^{\circ}$ is	1
	a) 30° b) 60° c) 45° d) 135°	
9	In the given figure, if $\angle RPS = 25^{\circ}$, the value of $\langle ROS \text{ is} \rangle$	1

	➤ D				
		25° P			
() 1250/1) 1.450() 1	(50(1) 1550			
			. 1 . 1	11.05	1
		ible speed at wr	iich a giri can v	valk 95 m and 1/1 m in an exact	1
) 10 m/min	a) 22m/min	d) 12m/min	
a) 1/111/1	.11111 0,) 19 111/11111	C) 2311/111111	d) 1311/111111	
The radius of	the largest	right circular co	one that can be	cut out from a cube, of edge 4.2	1
	the largest	right chedial co	ine that eath be	cat out from a case of cage 1.2	1
	b) 2	.1 c) 8.4	d) 1.05		
				ively. The value of the mode is:	1
			_	ivery. The variet of the mode is .	-
					1
				+1)/2	1
,					1
				to times its neight, then the ungle	1
			lar to segment	AB. If $OA = 5$ cm. $PO = 7$ cm and	1
				71B. If 371 = 3 cm, 1 3 = 7 cm and	_
			~		
				В	
hen the ratio		_	-		1
a)	1:2	b) 2:1	c) 1:4	d) 4:1	
DI	G) (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CE 0.1 1			
			•	the least prime numbers is	1
a)	1:2	b) 2:1	c) 1:1	d) 1:3	
a) AB is a chord	1:2 d of the circ	b) 2:1	c) 1:1 ts diameter suc	d) 1:3 ch that angle ACB = 50° . If AT is	1
a) AB is a chord he tangent to	1:2 d of the circ	b) 2:1 cle and AOC is i	c) 1:1 ts diameter suc	d) 1:3 ch that angle ACB = 50° . If AT is	
a) AB is a chord he tangent to	1:2 d of the circ the circle a	b) 2:1 cle and AOC is interest the point A, the	c) 1:1 ts diameter suc	d) 1:3 ch that angle ACB = 50° . If AT is	
a) AB is a chord he tangent to	1:2 d of the circ the circle a	b) 2:1 cle and AOC is interest the point A, the	c) 1:1 ts diameter suc	d) 1:3 ch that angle ACB = 50° . If AT is	
a) AB is a chord he tangent to	1:2 d of the circ the circle a	b) 2:1 cle and AOC is interest the point A, the	c) 1:1 ts diameter suc	d) 1:3 ch that angle ACB = 50° . If AT is	
	What is the grand with the radius of cm is: a) 4.2 The mean and a) 20 The arithmetical in fat some time of elevation of a) 15°(b) 30° in the figure, and a compare a (\(\Delta \text{QOA} \) The mean and a compare	What is the greatest possumber of minutes? a) 17 m/min The radius of the largest cm is: a) 4.2 b) 2. The mean and median of a) 20 b) 20 The arithmetic mean of the algorithm of the sun, at a) 15°(b) 30°(c) 45°(d) on the figure, PB and QA and the figure, PB and QA area (\(\Delta\)QOA) = 150 cm², when the radius of the base of the the radius of the volume ylinder is:	(a) 135°(b) 145°(c) 165°(d) 155° What is the greatest possible speed at whomber of minutes? a) 17 m/min b) 19 m/min The radius of the largest right circular common co	(a) 135°(b) 145°(c) 165°(d) 155° What is the greatest possible speed at which a girl can with the greatest possible speed at which a gir	What is the greatest possible speed at which a girl can walk 95 m and 171 m in an exact number of minutes? a) 17 m/min b) 19 m/min c) 23m/min d) 13m/min The radius of the largest right circular cone that can be cut out from a cube of edge 4.2 cm is: a) 4.2 b) 2.1 c) 8.4 d) 1.05 The mean and median of the data are 20 and 22 respectively. The value of the mode is: a) 20 b) 26 c) 22 d) 21 The arithmetic mean of first n natural number is a) n b) n+1 c) (n+1)/2 d) n(n+1)/2 f at some time, the length of the shadow of a tower is $\sqrt{3}$ times its height, then the angle of elevation of the sun, at that time is: a) 15°(b) 30°(c) 45°(d) 60° n the figure, PB and QA are perpendicular to segment AB. If OA = 5 cm, PO = 7cm and rea (Δ QOA) = 150 cm², find the area of Δ POB.

19	DIRECTION: In the question number 19 and 20, a statement of Assertion (A) is	1
19	followed by a statement of Reason (R) .	1
	Choose the correct option	
	Choose the correct option	
	Assertion(A) : The value of tan A is always less than 1.	
	· · ·	
	Reason (R): tan A= 1/cotAsinA	
	a) Doth Assertion (A) and Decemp(D) are connect statements and recogn(D) is the	
	a) Both Assertion (A) and Reason(R) are correct statements and reason(R) is the	
	correct explanation of the assertion (A).	
	b) Both Assertion (A) and Reason(R) are correct statements, but Reason(R) is not	
	the correct explanation of the Assertion (A).	
	c) Assertion (A) is correct, Reason (R) is wrong statement.	
	d) Both Assertion (A) and Reason (R) are wrong statements.	
20	Assertion: A number N when divided by 15 gives the remainder 2. Then the remainder	1
	is same when N is divided by 5.	
	Reason: $\sqrt{3}$ is an irrational number.	
	a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of	
	assertion (A)	
	(b) Both assertion (A) and reason (R) are true and reason (R) is not the correct	
	explanation of assertion (A)	
	(c) Assertion (A) is true but reason(R) is false.	
	(c) Assertion (A) is true but reason(R) is false.	
1		
	(d) Assertion (A) is false but reason(R) is true	
	(d) Assertion (A) is false but reason(R) is true	
21	(d) Assertion (A) is false but reason(R) is true Section B Section B consists of 5 questions of 2 marks each.	2
21	(d) Assertion (A) is false but reason(R) is true Section B Section B consists of 5 questions of 2 marks each.	2
	(d) Assertion (A) is false but reason(R) is true Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1 - \frac{1}{n}) + (1 - \frac{2}{n}) + (1 - \frac{3}{n})$ upto n terms.	
21 22	(d) Assertion (A) is false but reason(R) is true Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1 - \frac{1}{n}) + (1 - \frac{2}{n}) + (1 - \frac{3}{n})$ upto n terms. Let $\theta = 7/8$, evaluate:	2
	(d) Assertion (A) is false but reason(R) is true Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1 - \frac{1}{n}) + (1 - \frac{2}{n}) + (1 - \frac{3}{n})$ upto n terms.	
	(d) Assertion (A) is false but reason(R) is true Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1-\frac{1}{n})+(1-\frac{2}{n})+(1-\frac{3}{n})$ upto n terms. Let $\theta = 7/8$, evaluate: $1 + \sin \theta (1 - \sin \theta)/(1 + \cos \theta)(1 - \cos \theta)$	
22	(d) Assertion (A) is false but reason(R) is true Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1 - \frac{1}{n}) + (1 - \frac{2}{n}) + (1 - \frac{3}{n})$ upto n terms. $\cot \theta = 7/8$, evaluate: $1 + \sin \theta)(1 - \sin \theta)/(1 + \cos \theta)(1 - \cos \theta)$ ii) $\cot^2 \theta$	2
	(d) Assertion (A) is false but reason(R) is true Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1-\frac{1}{n})+(1-\frac{2}{n})+(1-\frac{3}{n})$ upto n terms. $\cot \theta = 7/8$, evaluate: $1 + \sin \theta)(1 - \sin \theta)/(1 + \cos \theta)(1 - \cos \theta)$ ii) $\cot^2 \theta$ The length of a tangent from a point A at distance 5 cm from the centreof the circle is 4	
22	Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1-\frac{1}{n})+(1-\frac{2}{n})+(1-\frac{3}{n})$ upto n terms. Find the sum of $(1-\sin\theta)/(1+\cos\theta)$ upto n terms. Find the sum of $(1-\sin\theta)/(1+\cos\theta)$ to $(1-\cos\theta)$ ii) $\cot^2\theta$ The length of a tangent from a point A at distance 5 cm from the centreof the circle is 4 cm. Find the radius of the circle.	2
22	Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1-\frac{1}{n})+(1-\frac{2}{n})+(1-\frac{3}{n})$ upto n terms. cot $\theta=7/8$, evaluate: $1+\sin\theta)(1-\sin\theta)/(1+\cos\theta)(1-\cos\theta)$ ii) $\cot^2\theta$ The length of a tangent from a point A at distance 5 cm from the centreof the circle is 4 cm. Find the radius of the circle. OR	2
22	Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1 - \frac{1}{n}) + (1 - \frac{2}{n}) + (1 - \frac{3}{n})$ upto n terms. Let $\theta = 7/8$, evaluate: $1 + \sin \theta)(1 - \sin \theta)/(1 + \cos \theta)(1 - \cos \theta)$ ii) $\cot^2 \theta$ The length of a tangent from a point A at distance 5 cm from the centreof the circle is 4 cm. Find the radius of the circle. OR Two concentric circle are of radii 5cm and 3cm find the length of the chord of the larger	2
22	Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1-\frac{1}{n})+(1-\frac{2}{n})+(1-\frac{3}{n})$ upto n terms. ot $\theta=7/8$, evaluate: $1+\sin\theta)(1-\sin\theta)/(1+\cos\theta)(1-\cos\theta)$ ii) $\cot^2\theta$ The length of a tangent from a point A at distance 5 cm from the centreof the circle is 4 cm. Find the radius of the circle. OR Two concentric circle are of radii 5cm and 3cm find the length of the chord of the larger circle which touches the smaller circle.	2
22	Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1-\frac{1}{n})+(1-\frac{2}{n})+(1-\frac{3}{n})$ upto n terms. ot $\theta=7/8$, evaluate: $1+\sin\theta)(1-\sin\theta)/(1+\cos\theta)(1-\cos\theta)$ ii) $\cot^2\theta$ The length of a tangent from a point A at distance 5 cm from the centreof the circle is 4 cm. Find the radius of the circle. OR Two concentric circle are of radii 5cm and 3cm find the length of the chord of the larger circle which touches the smaller circle. In figure, Δ ODC \sim Δ OBA, \angle BOC = 125° and \angle CDO = 70°. Find \angle DOC, \angle DCO and	2
22	Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1-\frac{1}{n})+(1-\frac{2}{n})+(1-\frac{3}{n})$ upto n terms. ot $\theta=7/8$, evaluate: $1+\sin\theta)(1-\sin\theta)/(1+\cos\theta)(1-\cos\theta)$ ii) $\cot^2\theta$ The length of a tangent from a point A at distance 5 cm from the centreof the circle is 4 cm. Find the radius of the circle. OR Two concentric circle are of radii 5cm and 3cm find the length of the chord of the larger circle which touches the smaller circle.	2
22	Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1-\frac{1}{n})+(1-\frac{2}{n})+(1-\frac{3}{n})$ upto n terms. ot $\theta=7/8$, evaluate: $1+\sin\theta)(1-\sin\theta)/(1+\cos\theta)(1-\cos\theta)$ ii) $\cot^2\theta$ The length of a tangent from a point A at distance 5 cm from the centreof the circle is 4 cm. Find the radius of the circle. OR Two concentric circle are of radii 5cm and 3cm find the length of the chord of the larger circle which touches the smaller circle. In figure, Δ ODC \sim Δ OBA, \angle BOC = 125° and \angle CDO = 70°. Find \angle DOC, \angle DCO and	2
22	Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1-\frac{1}{n})+(1-\frac{2}{n})+(1-\frac{3}{n})$ upto n terms. ot $\theta=7/8$, evaluate: $1+\sin\theta)(1-\sin\theta)/(1+\cos\theta)(1-\cos\theta)$ ii) $\cot^2\theta$ The length of a tangent from a point A at distance 5 cm from the centreof the circle is 4 cm. Find the radius of the circle. OR Two concentric circle are of radii 5cm and 3cm find the length of the chord of the larger circle which touches the smaller circle. In figure, Δ ODC \sim Δ OBA, \angle BOC = 125° and \angle CDO = 70°. Find \angle DOC, \angle DCO and	2
22	Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1-\frac{1}{n})+(1-\frac{2}{n})+(1-\frac{3}{n})$ upto n terms. ot $\theta=7/8$, evaluate: $1+\sin\theta)(1-\sin\theta)/(1+\cos\theta)(1-\cos\theta)$ ii) $\cot^2\theta$ The length of a tangent from a point A at distance 5 cm from the centreof the circle is 4 cm. Find the radius of the circle. OR Two concentric circle are of radii 5cm and 3cm find the length of the chord of the larger circle which touches the smaller circle. In figure, Δ ODC \sim Δ OBA, \angle BOC = 125° and \angle CDO = 70°. Find \angle DOC, \angle DCO and	2
22	Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1-\frac{1}{n})+(1-\frac{2}{n})+(1-\frac{3}{n})$ upto n terms. oot $\theta=7/8$, evaluate: $1+\sin\theta)(1-\sin\theta)/(1+\cos\theta)(1-\cos\theta)$ ii) $\cot^2\theta$ The length of a tangent from a point A at distance 5 cm from the centreof the circle is 4 cm. Find the radius of the circle. OR Two concentric circle are of radii 5cm and 3cm find the length of the chord of the larger circle which touches the smaller circle. In figure, \triangle ODC \sim \triangle OBA, \angle BOC = 125° and \angle CDO = 70°. Find \angle DOC, \angle DCO and \angle OAB.	2
22	Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1-\frac{1}{n})+(1-\frac{2}{n})+(1-\frac{3}{n})$ upto n terms. Find the sum of $(1-\frac{1}{n})+(1-\frac{2}{n})+(1-\frac{3}{n})$ upto n terms. Find the sum of $(1-\sin\theta)/(1+\cos\theta)$ (1-cos θ) ii) $\cot^2\theta$ The length of a tangent from a point A at distance 5 cm from the centreof the circle is 4 cm. Find the radius of the circle. OR Two concentric circle are of radii 5cm and 3cm find the length of the chord of the larger circle which touches the smaller circle. In figure, $\triangle ODC \sim \triangle OBA$, $\triangle BOC = 125^\circ$ and $\triangle CDO = 70^\circ$. Find $\triangle DOC$, $\triangle DCO$ and $\triangle OAB$.	2
22	Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1-\frac{1}{n})+(1-\frac{2}{n})+(1-\frac{3}{n})$ upto n terms. oot $\theta=7/8$, evaluate: $1+\sin\theta)(1-\sin\theta)/(1+\cos\theta)(1-\cos\theta)$ ii) $\cot^2\theta$ The length of a tangent from a point A at distance 5 cm from the centreof the circle is 4 cm. Find the radius of the circle. OR Two concentric circle are of radii 5cm and 3cm find the length of the chord of the larger circle which touches the smaller circle. In figure, \triangle ODC \sim \triangle OBA, \angle BOC = 125° and \angle CDO = 70°. Find \angle DOC, \angle DCO and \angle OAB.	2
22	Section B Section B consists of 5 questions of 2 marks each. Find the sum of $(1-\frac{1}{n})+(1-\frac{2}{n})+(1-\frac{3}{n})$ upto n terms. oot $\theta=7/8$, evaluate: $1+\sin\theta)(1-\sin\theta)/(1+\cos\theta)(1-\cos\theta)$ ii) $\cot^2\theta$ The length of a tangent from a point A at distance 5 cm from the centreof the circle is 4 cm. Find the radius of the circle. OR Two concentric circle are of radii 5cm and 3cm find the length of the chord of the larger circle which touches the smaller circle. In figure, \triangle ODC \sim \triangle OBA, \angle BOC = 125° and \angle CDO = 70°. Find \angle DOC, \angle DCO and \angle OAB.	2

25	The wheels of a car are of diameter 80 cm each. How many complete revolutions does each wheel make in 10 minutes when the car is travelling at a speed of 66 km per hour OR	2
	The length of the minute hand of a clock is 14cm. Find the area swept by the minute hand in 5 minutes.	
	SECTION C	
	Section C consists of 6 questions of 3 marks each.	
26	Prove the identity, where the angles involved are acute angles for which theexpressions are defined.	3
	(i) $(\csc \theta - \cot \theta)^2 = (1-\cos \theta)/(1+\cos \theta)$	
27	In a game of musical chair, the person playing music has been advised to stop playing the music at any time within 1 minute after she starts playing. What is the probability that the music will stop within the first 20 sec.after starting?	3
28	If a hexagon ABCDEF circumscribe a circle. Prove that: AB + CD + EF = BC + DE + FA. OR In the fig. tangents PQ and PR are drawn to circle such that ∠RPQ = 30°. A chord RS is drawn parallel to the tangent PQ. Find ∠RQS.	3
	5 - O - O - O - P	
29	Prove that $\sqrt{5}$ -3 is irrational.	3
30	A thief runs with a uniform speed of 100m/min. After one minute, a police runs after the thief to catch him. He goes with a speed of 100m/min in the first minute and increases his speed by 10 m/min every succeeding minute. After how many minutes the policeman will catch the thief?	3
	A passenger, while boarding the plane, slipped from the stairs and got hurt. The pilot took the passenger in the emergency clinic at the airport for treatment. Due to this, the plane got delayed by half an hour. To reach the destination 1500km away in time, so that the passengers could catch the connecting flight, the speed of the plane was increased by 250km/hour than the usual speed. Find the usual speed of the plane.	
31	If a and b are the zeroes of the quadratic polynomial $f(x)=x^2-x-2$, find a polynomial where zeroes are (2a-1) and (2b-1)	3

		SEC	ΓΙΟΝ D		
	Section D consists of 4				
32	The following distribut The mean pocket allow and Median	ion shows the daily po	ocket allowance of	_	5
		Daily pocket allowances (in ₹)	No. of children		
		11 – 13	7		
		13 – 15	6		
		15 – 17	9		
		17 – 19	13		
		19 – 21	f		
		21 – 23	5		
		23 – 25	4		
	thickness, which are cylindrical in shape with a raised hemispherical bottom. The mugs are 14cm high and have diameter of 7cm as shown in given figure. Both A and B self flavoured milk at the rate of Rs 80per litre. The dairy owner A uses the formula $\pi r^2 h$ to find the volume of milk in the mug and charges Rs 43.12 for it. The dairy owner B is of the view that the price of actual quantity of milk should be charged. What according to him should be the price of one mug of milk?(use $\pi = 22/7$)				
	\mathbf{OR}				
	tank in his field, which	a pipe of internal dian is 12m in diameter m/h, in how much tim	meter 25cm from and 2.5m deep. I he will the tank be	a canal into a cylindrical f water flows through the e filled? Also find the cost $\frac{\pi}{22/7}$	
34	The difference of the squares of two numbers is 180. The square of the smaller number			5	
	is 8 times the greater number. Find the two numbers. OR				
	A Train travels 180 k would have taken 1 hou	m at a uniform speed	. If the speed had	been 9 km/hour more, it of the train.	
35				2 so that AP:PB=3:2 and	5
	CQ:QD=4:1. If PQ mee		/		
			ΓΙΟΝ E		
26				-	
36	Case study based questions are compulsory. Each question carry 4 marks Sales goals are the objectives a company or a team wants to achieve in a given time. It gives sales teams a roadmap of what they need to do to help their company achieve specific targets.				

At the time that I was newly hired, 100 sales per month was what I required. Each following month the last plus 20 more, as I work for the goals of top sales award. When 2500 sales are thusly made, I got a holiday package

i) How many sales were made by this person in the seventh month? (1 mark)

1

2

1

ii) What were the total sales after the 12 thmonth?

OR

After how many month will be the sale 2500?

iii) Was the 2500 total sales met after the 12th month?

When an eagle looks at a rat on the ground, eagle does not attack the rat at its initial position. It takes into account the speed of the rat and the direction in which rat is moving. After analysing the situation (how? It may be God's gift) eagle attacks the rats

in such a way that it may successful in catching the rat.

Suppose an eagle sitting on the tree of height 90m, observe a rat with angle of depression 45°, and moving away from the tree with some speed. Eagle start flying 30° downward and catch rat in 10 second

1

i) What is the horizontal distance between tree and initial position of rat?

2

ii) What is the distance travelled by rat in 10 seconds?

OR

What is the distance travelled by eagle to catch rat?

1

iii) What is the speed of eagle?

38

Rehan lives in Meghalaya. Satellite image of his colony is shown in given figure. In this view, his house is pointed out by a flag, which is situated at the point of intersection of x and y-axis. If he goes 2cm east and 3 cm north from the house, then he reaches a grocery store, if he goes 4cm west and 6 cm south from the house, then he reaches to his office. If he goes 6cm east and 8cm south from the house then he reaches to a food court. If he goes 6cm west and 8cm north from the house, he reaches to his kid's school

- i) Find the distance between grocery store and food court?
- ii) If the grocery store and office lie on a line, what is the ratio of distance of house from grocery store to that from office?

OR

What shape is formed by the coordinates of positions of school l, grocery store, food court and office?

1

iii) Find the ratio of distance of house from school to food court?

2

1

KENDRIYA VIDYALAYA SANGATHAN, JAMMU REGION SAMPLE PAPER SET- 12

CLASS – X TIME – 3 HOURS

SUBJECT- MATHS (STD) M.M- 80 MARKS

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section **B** has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section **D** has 4 questions carrying 05 marks each.
- 6. Section **E** has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.

	SECTION A	
	Section A consist of 20 questions of 1 mark each.	
Q.		Mark
No		S
•		
1	Three bulbs red, green and yellow flash at an interval of 80 seconds, 90 seconds and	1
	110 seconds. All three flash together at 8:00am. At what time will the three bulbs flash	
	altogether again?	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	a) 9:00amb) 9:12am c) 10:00am d) 10:12 am	
2	The numbers of zeroes in the end of a number whose prime factorization is	1
	$2^2 \times 5^3 \times 3^2 \times 17$ is	
	a) 1 b) 2 c) 3 d) 4	
3	Which of the following statements is not true:-	1
	a) For any two positive integers a and b HCF(a,b)×LCM(a,b) = $a \times b$.	
	b) For any three positive integers p,q and r	
	HCF $(p, q, r) \times LCM(p, q, r) = p \times q \times r$.	
	c) Let p be a prime number . If p divides a ² , then p divides a , where a is apositive	
	integer.	
	d) Every composite number can be factorized as a product of primes and this	
	factorization is unique, apart from the order in which the prime factors occurs.	
4	Given that $m + 2$, where m is a positive integer, is a zero of the polynomial $p(x) = x^2$	1
	-mx - 6 which of these is the value of m?	
	a) 1b) 2 c) 3 d) 4	
5	In the equations shown below, a and b are unknown constants.	1

	3ax + 4y = -2	
	2x + by = 14	
	If (-3,4) is the solution of the given equations, what are the values of a and b?	
	a) The value of $a = -2 b = 5$	
	b) The value of $a = 5$, $b = 2$	
	c) The value of a = 5 and b = -2	
	d) The value of $a=2$, $b=5$	
6	The value of	1
	$\frac{4-\sin^2 45}{\cot k \tan 60}$ is 3.5. what is the value of k?	
	a)30° b)60° c)45° d) 90° If $\sin \theta = \frac{7}{\sqrt{85}}$, what are the values of $\tan \theta$ and $\cos \theta$?	
7	If $\sin \theta = \frac{7}{\sqrt{85}}$, what are the values of $\tan \theta$ and $\cos \theta$?	1
	a) $\tan \theta = \frac{7}{6}, \cos \theta = \frac{6}{\sqrt{85}}$	
	b) $\tan \theta = \frac{6}{7}, \cos \theta = \frac{7}{\sqrt{85}}$	
	c) $\tan \theta = \frac{7}{6}$, $\cos \theta = \frac{7}{\sqrt{85}}$	
	d) $\tan \theta = \frac{6}{7}, \cos \theta = \frac{6}{\sqrt{85}}$	
8	The points $(4,0)$, $(-4,0)$ and $(0,3)$ are the vertices of a:	1
	a) Right triangleb) Isosceles triangle	
	b) Equilateral triangle d)Scalene triangle	
9	Point P divides the line segment joining R(-1,3) and S(9,8) in the ratio k:1.If P lies	1
	on the line $x - y + 2 = 0$, then the value of k is:	
	a) $\frac{2}{3}$ b) $\frac{1}{2}$ c) $\frac{1}{3}$ d) $\frac{1}{4}$	
10	R 42°	1
	In the figure shown ,RJ and RL tangents of the circle.What is the measure of angle < JRL ?	
	a) 48° b) 6° c) 96° d) 138°	
11	B C C	1
	In the above fig.,triangle ABC is circumscribing acircle. Then the length of BC is:	<u> </u>

	a) 7 cm b) 8 cm c) 9 cm d) 10 cm	
12	Observe the two triangles shown below:	1
	2.4 cm A 1.6 cm 70° 0.8 cm D	
	Which statement is correct? a) Triangles are similar by SAS b) Triangles are similar by SSA c) Triangles are not similar as sides are not in proportion. d) No conclusion about similarity of triangles can be made as angle measures are not known.	
13	Area of a sector of angle p (in degrees)of a circle with radius R is: a) $\frac{p}{180} \times 2\pi R$ b) $\frac{p}{180} \times \pi R^2$ c) $\frac{p}{360} \times 2\pi R$ d) $\frac{p}{720} \times 2\pi R^2$	1
14	A solid is hemispherical at the bottom and conical above it. The surface area of the two parts are equal, then the ratio of its radius and the height of its conical part is: a) 1: 3 b)1: $\sqrt{3}$ c) 1: 1 d)1: 7	1
15	If we reduce the height of a cylinder by $\frac{1}{4}$ and double the radius ,what will be the impact on the volume of cylinder? a) Volume will be doubled b) Volume remains same c) Volume will reduced to half d) Volume will increased by four times.	1
16	For the following distribution:	1
	Marks Below 20 30 40 50 60	
	No. of Students 3 12 27 57 75 80	
	The modal class is : a) 10-20 b) 20-30 c) 30-40 d) 50-60	
17	A grouped data is shown below. If the median of the grouped data is 22.50 and the	1
	total frequency is 20, then what is the value of a?	
	0-10 4 4	
	10-20 a 4+ a	

	20-30	4	8+a	
	30-40	b	8 +a +b	
	40-50	5	13 +a +b	
	10 30	3	13 14 10	
	a) 1 b) 2 c) 4	d) 5		
		<i>u)</i> 3		
18	Two dice are thrown at the sa	me time .what is the prob	pability that the sum of tw	70 1
	numbers appearing on the top	1	•	
	a) $\frac{0}{36}$			
	b) $\frac{1}{a}$			
	36 11			
	c) $\frac{11}{36}$			
	d) $\frac{36}{36}$			
19	Statement A (Assertion): i	f a and c are of opposite s	signs, then the quadratic	1
	equation $ax^2 + bx + c = 0$, has		G , wie quadratie	
	Statement R (Reason): if d		tic equation is not equal t	o zero
	, it has real and distinct roots.		•	
	a) Both assertion A and		ason R is the correct	
	explanation of asserti			
	b) Both assertion A and		son is not the correct	
	explanations of assert c) ASSERTION A is tru			
	d) Assertion A is false b			
20	Statement A (Assertion)		en $\cos^2 \theta + \cos^4 \theta = 1$	1
	Statement R (Reason):1 -			
	(21000001) (1			
	a) Both assertion A and 1	reason R are true and rea	son R is the correct expla	nation
	of assertion A.		-	
		eason R are true but reason	on is not the correct	
	explanations of assertion			
	c) ASSERTION A is true			
	d) Assertion A is false bu			
	Section B consists of 5 ques	SECTION B		
21	For which value of k, the given		3x + 2ky = 2 - 0 and	2
	_		15 $3A + 2Ky = 2 - 0$ and	2
	2x+5y+1 = 0 have no solution	n ?		
22	Find the value of x in tan 3x	$= \sin 45^{\circ} \cos 45^{\circ} + \sin 30^{\circ}$	where 3x is an acute ang	gle. 2
		OR		
	Show that (sec $A + \tan A$) (1			
23	Find the area of the seg	gment of a circle of	radius14cm,if the leng	gth of 2
	thecorresponding arc is 22cm			
		OR		
	If the area of a sector of a cir	cele is $\frac{5}{18}$ th of the area of	that circle, then find the	central
	ii die area of a sector of a cif	$\frac{18}{18}$ in of the area of	ulat circle, then find the	central

	angle of the sector.	
	angle of the sector.	
24	Find the perimeter of ΔABC, if AP=12 cm.	2
25	The diagonals of a quadrilateral ABCD intersect each other at the point O such that	2
	$\frac{AO}{BO} = \frac{CO}{DO}$. Show that ABCD is a trapezium.	
	SECTION C	
	This section has 6 questions of 3 marks each.	
26	Provethat of $3+2\sqrt{5}$ is irrational.	3
27	If α, β are the zeroes of the polynomial $2x^2-4x+5$, then find the value of (a) $\alpha^2 + \beta^2$ (b) $(\alpha - \beta)^2$ (c) $\frac{1}{\alpha} + \frac{1}{\beta}$	3
28	A train covered a certain distance at a uniform speed. If the train would have been 6km/hr faster, it would havetaken 4hours less than the scheduled time. And if the train were slower by 6km/hr, it would have taken 6 hoursmore than the scheduled time. Find the distance of the journey. OR Students are made to stand in rows. If one student is extra in a row there would be 2 rows less. If one student isless in a row there wouldbe 3 rows more. Find the number of students in the class.	3
29	Prove that $(\sin A + \csc A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A$	3
30	A class has 15 girls and 10 boys. The teacher calls on a student at random to answer a question. Express in decimal form, the probability that a student called upon is	3
	i) a girl	
	ii) a boy	
	iii) a pupil in the class.	
31	Prove that length of tangents drawn from an external point to a circle are equal.	3
	Using this result, find the length of CD?	

	OR Prove that the parallelogram circumscribing a circle is a rhombus.					
-	SECTION D					
32	Section D consists of 4 questions of 5 marks each. Transport department of city wants to buy some electric buses for the city . For which	5				
	they want to analyse the distance travelled by existing public transport buses in a day. The following data shows the distance travelled by 60 existing public transport buses in a day.					
	Distance No. of Buses					
	travelled in					
	kms					
	200-209 4					
	210-219 14					
	220-229 26					
	230-239 10					
	240-249 6					
	Based on this information, answer the following questions. 1] The upper limit of a class and lower limit of succeeding class differ by? 2] The median lies inside which class? 3] The cumulative frequency of the class preceding the median class is? 4] The formula for finding median of grouped data is? 5] The median distance travelled in km is?					
33	Answer the following questions based on similarity of the triangles: a)Define AAA similarity criterion of two triangles b)Two triangles are similar, is it true to say that they are congruent also? Justify it. c) D is a point on the side BC of triangle ABCsuch that \angle ADC = \angle BAC. Prove that $CA^2 = CB \times CD$	5				

34	In the picture given below, one can see a rectangular in-ground swimming pool installed by a family in their backyard. There is a concrete sidewalk aroundthe pool of width x m. The outside edges of the sidewalk measure 7m and 12m. The area of the pool is 36 sq.m.	5
	 (a) Based on the information given above ,form a quadratic equation in terms of x (b) Find the width of the sidewalk around the pool. 	
35	A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius. The total height of the toy is 15.5 cm. Find the total surface area of the toy.	5
	SECTION E	
	Case study based questions are compulsory. Each question carry 4 marks	
36	Akshat a student of class 10 participated in a school level mathematics quiz competition. On a set of a pair of perpendicular axes on a graph paper. Akshat plot the following points and join them as directed by the teacher in that competition. He joins the points $D(1,6)$ to $E(1,50)$ to $F(3,3)$ to $G(6,3)$ to $G(6,3)$ to $G(8,6)$ to $G(8$	

MATHS

Based on the above information answer the following

- i) Plot these points on a graph paper and Find distance FI?
- ii) Find the coordinates of the point P which divides the join of F(3,3) and I(8,6) in the ratio 2:1

OR

Find the ratio in which the line segment joining the points G(6,3) and H(8,5) is divided by a point R(7,4)

iii) Find if the points (4,3),(5,1), and (1,9) are collinear?

37

A girl 8m tall spots a parrot sitting on the top of a building of height 58m from the ground. The angle of elevation of the parrot from the eyes of girl at any instant is 60°. The parrot flies away horizontally in such a way that it remained at a constant height from the ground. After 8 seconds, the angle of elevation of the parrot from the same point is 30°. Based on the above information, answer the following questions:

Based on the above information, answer the following questions:

- i) Draw a diagram to depict the above information.
- ii) Find the distance of first position of the parrot from the eyes of the girl.

1

2

1

2

1

OR

	Find the	he distance between the girl and the building.	1
	iii)	If the distance between the position of parrot increases, what is the change in the angle of elevation. Does it increase or decrease?	
38	He repays	der brother wants to buy a car and plans to take loan from a bank for his car. It is his total loan of Rs. 118000 by paying every month starting with the first nt of Rs. 1000. He increases the installment by Rs. 100 every month.	
		NEED A CAR LOAN?	
	Based on	the above information, answer the following questions:	
	i)	Set up an A.P. based on the above information. Find the amount paid by him in the 30 th installement?	1
	ii)	Find the amount paid by him in the 30 installements? OR	2
	Find the	he sum of $(1-\frac{1}{n}) + (1-\frac{2}{n}) + (1-\frac{3}{n})$ upto n terms ?	
	iii)	What amount does he still have to pay after 30 th installment?	1

KENDRIYA VIDYALAYA SANGATHAN, JAMMU REGION

SAMPLE PAPER SET- 13

CLASS – X	SUBJECT- MATHS (STD)
TIME – 3 HOURS	M.M- 80 MARKS
INSTRUCTIONS:-	
(i) All questions are compulsory	
(ii) The question paper consist of 38 questions divided into five sections comprises 20 MCQs of 1 mark each. Section B comprises 5 question comprises 6 questions of 3 marks each and Section-D comprises 4 questions of 3 marks each and 3 marks	of 2 marks each; section C
Section E has 3 case based integrated units of assessment (04 marks values of 1,1 and 2 marks each respectively .	each) with sub-parts of the
(iii)There is no overall choice in this question paper. However, an internal of 3 marks and 2Qs of 2 marks has been provided. An internal choice has be questions of Section E. You have to attempt only one of the alternatives in s	een provided in the 2 marks
(iv)Use of any calculating device is not permitted.	
SECTION - A (20 Questions.1 man	rk each)
1. LCM of two numbers is 1200. Which of the following cannot be their HC (A) 600 (B) 400 (C) 200 (D) 500	CF?
 2. The sum of first 20 odd natural numbers is: (A) 150 (B) 200 (C) 400 (D) 210 3. Maximum zeroes,a quadratic polynomial can has: (A) 1 (B) 2 (C) 3 (D) 0 	
4. Equations $2x + 3y = 5$ and $4x + ky = 10$ has infinitely many solutions, then (A) 2 (B) 4 (C) 1 (D) 6	value of k is:
5.If $\cos A=4/5$, then the value of $\tan A$ is (A) $3/5$ (B) $3/4$ (C) $4/3$ (D) $5/3$ 6.If $\cot A=\sqrt{3}$, then $\sec^2 A - \cos^2 A$ is equal to A) $7/12$ (B) $25/12$ (C) $6/12$ (D) $5/12$ 7.If -1 is a zero of polynomial $p(x)=x^2-7x-8$ then the other zero is: A) -8 (B) -7 (C) 1 (D) 8	
8. Sin2A = 2SinA, then A= °: (A) 0 (B) 30 (C) 45 (D) 60	
9.Zeroes of quadratic polynomial x ² -5x + 6 are: A) -5,1 (B) 5,1 C) 2,3 (D) -2,-3	

10. If a pair of linear equations is consistent, then the lines will be: (A) parallel (B) always coincident (C) intersecting and coincident (D) always intersecting
11. The pair of equations $x + 2y + 5 = 0$ and $-3x - 6y + 1 = 0$ has: A) a unique solution(B) exactly two solutions(C)infinitely many solutions (D) no solution. 12.In $\triangle ABC$, DE ll BC, so that AD = $(7x-4)$ cm, AE= $(5x-2)$ cm, DB= $(3X+4)$ CM, and EC= $3x$ cm, then the value of x :
A) 1 (B) 2 (C) 3 (D) 4
13. Two concentric circles are of radii 10cm and 8cm, then the length of the chord of the larger circle which
touches the smaller circle is:
(A) 6cm (B) 12cm (C) 18cm (D) 9 cm
14.If A is an acute angle and $\tan A + \cot A = 2$, then the value of $\sin^3 A + \cos^3 A$ is:
(A) 1 (B) $1/2$ (C) $\sqrt{2}/2$ (D) $\sqrt{2}$
15.If the perimeter of a circle is equal to that of a square, then the ratio of their areas is:
(A) 22: 7 (B) 14:11 (C) 7:22 (D) 11:14
16.If median= 137 and mean = 137.05, then the value of mode is:
(A) 156.90 (B) 136.90 (C) 186.90 (D) 206.90
17) The probability of getting 53rd Monday in a leap year is :
A) 1/7 (B) 2/7 (C) 3/7 (D) 4/7
18. A fair die is thrown once. The probability of enen composite number is :
A) 0 (B) 1/3 (C) 3/4 (D) 1
19.Assertion(A) The equation $5x^2 - 2x + 3 = 0$ has not real roots.
Reason (R) The quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$ has not real roots, if $b^2 - 4ac = 0$.
A) Both A and R are correct and R is correct explanation of A.
B) Both A and R are correct and R is not correct explanation of A.
C) A is correct but R is incorrect.
D) A is incorrect but R is correct.
20. Assertion (A) In an AP, $S_n = n^2 + n$, then $a_{20} = 40$.
Reason (R) In an AP, $a_n - a_{n-1} = d$
A) Both A and R are correct and R is correct explanation of A.
B) Both A and R are correct and R is not correct explanation of A.
C) A is correct but R is incorrect.
D) A is incorrect but R is correct.
SECTION B(5Questions, 2marks each)
21. the zeroes of the polynomial $(k^2+4)x^2+13x+4k$ are reciprocal of each other, then find the value of k . OR
If the discriminant of the equation $6x^2$ -bx +2 =0 is 1, then find the value of b.
22. In an equilateral $\triangle ABC$, AD is perpendicular on BC, then $AD^2 = $ (in terms of AB^2)
23. If 2p+1, 13 and 5p-3 are in Arithmetic Progression, then find the value of p. OR
Solve the following pair of linear equation by elimination method. $3x-5y-4=0$ and $9x=2y+7$.
24.If LCM of $(x, 18) = 36$ and HCF of $(x, 18) = 2$, then find x.
25. If the distance between the points (4, p) and (1,0) is 5, then find the value of p.
SECTION C (6 Questions, 3 marks each)

26. Prove that $\sqrt{3}$ is irrational. 0R Prove that 3-2 $\sqrt{5}$ is irrational.

27. If the eighth term of an A.P is 31 and the fifteenth term is 16 more than the eleventh term. Find the A.P.

OR . Find the value of
$$\sqrt{6 + \sqrt{6 + \sqrt{6 + \sqrt{6 \dots \dots }}}}$$

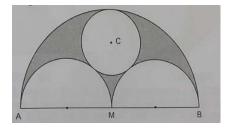
- 28. Prove that the parallelogram circumscribing a circle is a rhombus.
- 29. The diagonals of a quadrilateral ABCD intersect each other at the point O such that $\frac{AO}{BO} = \frac{CO}{DO}$. Show that ABCD is a trapezium.
- 30. If $a \cos \theta + b \sin \theta = m$ and $a \sin \theta b \cos \theta = n$, prove that $m^2 + n^2 = a^2 + b^2$.
- 31. Two dice are thrown simultaneously at random. Find the probability of getting (i) product 6 (ii) sum at least 10 (iii) sum less than or equal to 12.

SECTION D (4 Questions,5 marks each)

32. State and Prove Basic proportionality theorem.

Using the above theorem prove that a line through the point of intersection of the diagonals and parallel to the base of the trapezium divides the non parallel sides in the same ratio.

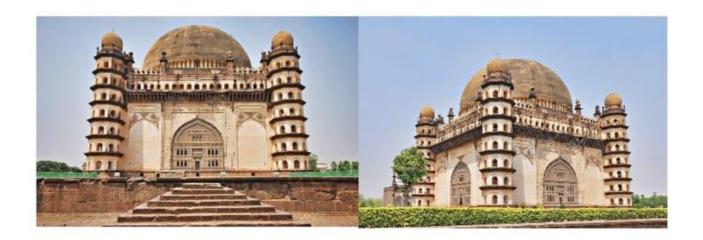
- 33. According to pollution control norms the minimum height of smoke emitting chimney should be 100m. This norm is to reduce air pollution and to maintain the air quality so that we can inhale fresh oxygen with any pollutant everyone should follow this norm. Angle of elevation of the top of a chimney from the top of a tower is 60° and the angle of depression of the foot of the chimney from the top of the tower is 30° . If height of the tower is 40m, find the height of the chimney. State if the above mentioned chimney meets the pollution norms.
- 34. The mean of the following frequency distribution is 57.6 and the sum of the observations is 50. Find the missing frequencies F_1 and F_2 .


Class	0-20	20-40	40-60	60-80	80-100	100-120	Total
Frequency	7	F ₁	12	F2	8	5	50

OR

If the median of the following data is 32.5. Find the values of x and y.

Class Interval	0-10	10-20	20-30	30-40	40-50	50-60	60-70	Total
Frequency	X	5	9	12	Y	3	2	40


35. In the given fig. AB= 36cm and M is the mid point of AB. Semicircles are drawn on AB, AM and MB as diameters. A circle with centre C touches all three semicircles. Find area of shaded region

A toy is in the form of a cone of radius 3.5cm mounted on a hemisphere of same radius. The total height of the toy is 15.5cm. Find the total surface area and volume of the toy.

SECTION E (3Questions Case study based, 4 marks each)

36.Mathematics teacher of a school took her 10th standard students to show Gol Gumbaz. It was a part of their Educational trip. The teacher had interest in history as well. She narrated the facts of Gul Gumbaz to students. Gol Gumbaz is the tomb of king Muhammad Adil Shah, Adil Shah Dynasty. Construction of the tomb, located in Vijayapura Karnataka, India, was started in 1626 and completed in 1656. Then the teacher said in this monument one can find combination of solid figures. She pointed that there are cubical bases and hemisherical dome is at the top.

- (i) What is the diagonal of the cubic portion of the Gol Gumbaz, if one side of cubical portion is 23m?
- (ii) A solid piece of iron taken out from the back of Gol Gumbaz in the form of a cuboid of dimensions $49 \text{ cm} \times 33 \text{ cm} \times 24 \text{ cm}$, is moulded to form a solid sphere. The radius of the sphere is :
- (iii) A block of Gol Gumbaz is in the shape of a cylinder of diameter 0.5 cm with two hemispheres stuck to each of its ends. The length of shape is 2 cm. The volume of the block is : (Use n = 3.14)

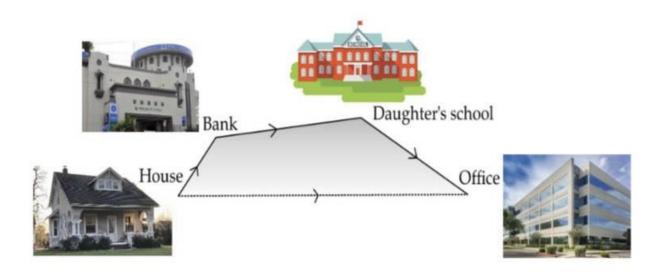
2CM

OI

If two solid hemispheres of same base radii r; are joined together along their bases, then curved surface area of this new solid is:

37. Aditya is celebrating his birthday. He invited his friends. He bought a packet of toffees/candies which contains 120 candies. He arranges the candies such that in the first row there are 3 candies, in second there are 5 candies, in third there are 7 candies and so on.

- (i) Find the total number of rows of candies.
- (ii) Find the number of candies in 15th row
- (iii) How many candies are placed in last row?


OR

Find the difference in number of candies placed in 7th and 3rd row.

38. Aditya Starts walking from his house to office. Instead of going to the office directly, he goes to a bank first, from there to his daughter's school and then reaches the office.

(Assume that all distances covered are in straight lines). If the house is situated at (2,

4), bank at (5, 8), school at (13, 14) and office at (13, 26) and coordinates are in km.

- (i) What is the distance between house and bank?
- (ii) What is the distance between Daughter's School and bank?
- (iii) What is the distance between house and office?

OR

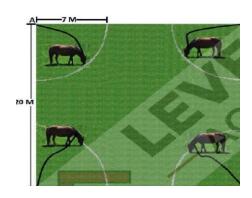
What is the total distance travelled by Aditya to reach the office?

KENDRIYA VIDYALAYA SANGATHAN, JAMMU REGION SAMPLE PAPER SET- 14

CLASS – X TIME – 3 HOURS SUBJECT- MATHS (STD) M.M- 80 MARKS

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 markeach
- 3. Section **B** has 5 questions carrying 02 markseach.
- 4. Section C has 6 questions carrying 03 markseach.
- 5. Section **D** has 4 questions carrying 05 markseach.
- 6. Section **E** has 3 case based integrated units of assessment (04 marks each) with sub- parts of the values of 1, 1 and 2 marks each espectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of SectionE
- 8. Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if notstated.

	SECTION A	
	Section A consists of 20 questions of 1 mark each.	
S.NO.		MARKS
1	If HCF (a, b) = 12 and $a \times b = 1800$ then LCM (a, b) is	1
	(a) 3600 (b) 000	
	(b) 900 (c) 150	
	(d) 90	
2	The roots of $100x^2 - 20x + 1 = 0$ is:	1
	(a) 1/20 and 1/20	
	(b) 1/10 and 1/20	
	(c) 1/10 and 1/10	
	(d) None of the above	
3	Zeroes of $p(x) = x^2-27$ are:	1
	(a) $\pm 9\sqrt{3}$	
	(b) $\pm 3\sqrt{3}$	
	(c) $\pm 7\sqrt{3}$	
	(d) None of the above	
4	The value of k, for which the system of equations $x + (k + 1)y = 5$ and $(k + 1)y = 5$	1
	1)x + 9y = 8k - 1 has infinitely	
	many solutions is	
	(a) 2	
	(b) 3 (c) 4	
	(c) 4 (d) 5	
	(4)	
5	The distance between the points $(0, 5)$ and $(-5, 0)$ is	1


	(a) 5 units	
	(b) $5\sqrt{2}$ units	
	(c) $2\sqrt{5}$ units	
	(d) 10 units	
6	The value of EC is: $ \begin{array}{c} & & \\ &$	1
	(a) 2.1 cm (b) 3 cm (c) 2 cm (d) 2.5 cm	
7	Given that $\sin \theta = \frac{a}{b}$, then $\cos \theta$ is equal to	1
	a) $\frac{b}{\sqrt{b^2 - a^2}}$ b) $\frac{b}{a}$ c) $\frac{\sqrt{b^2 - a^2}}{b}$ d) $\frac{a}{\sqrt{b^2 - a^2}}$	
8	If Cos (A-B) = $\frac{\sqrt{3}}{2}$ and Sin (A+B) =1, then the value of A and B,	1
	respectively are (a) 45^{0} and 15^{0} (b) 30^{0} and 15^{0} (c) 60^{0} and 30^{0} (d) None of these	
9	1. In the Fig., $\triangle ODC \sim \triangle OBA$, $\angle BOC = 125^{\circ}$ and $\angle CDO = 70^{\circ}$. Find $\angle OAB$.	1
	$ \begin{array}{c} & D & C \\ \hline & 70^{\circ} \\ \hline & A & B \end{array} $	
	(a) 55° (b) 70° (c) 125° (d) 110°	
10	1. Find the value of x for which DE BC in the adjoining figure	1
	2x+3 B	
	a) $x=2$ b) $x=3$ c) $x=1$ d) $x=4$	
11	If TP and TQ are tangents to the circle with centre O and $\angle POQ = 100^{\circ}$,	1

	then what will be the value of $\angle PTQ$.	
	P 100° Q	
	(a) 60^{0} (b) 70^{0} (c) 80^{0} (d) 90^{0}	
12	If the area of a sector of a circle is $\frac{5}{18}$ th of the area of that circle, then the central angle of the sector is:	1
	(a) 100° (b) 70° (c) 125° (d) 110°	
13	Three cubes each of sides 5 cm are joined end to end, then the surface area of the resulting solid is (a) 350 cm ² (b) 300cm ² (c) 250cm ² (d) 325cm ²	1
14	 Find mode using empirical formula when mean and median are 10.5 and 9.6 resp. (a) 6.2 (b) 7.2 (c) 7.8 (d) 6.8 	1
15	The area of the circle that can be inscribed in a square of side 6cm is: (a) $36\pi\text{cm}^2$ (b) $18\pi\text{cm}^2$ (c) $12\pi\text{cm}^2$ (d) $9\pi\text{cm}^2$	1
16	The median class of the given data is CLASS	1
17	. Two dice are tossed, the probability of getting doublets of odd numbers on both dice is (a) 3/12 (b) 1/12 (c) 4/12 (d) 2/12	1
18	Given 15 Cot A = 8, then Sin A = (a) $\frac{3}{5}$ (b) $\frac{4}{3}$ (c) 1 (d) None of these	1
19	DIRECTION: In the question number 19 and 20, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct option Statement A (Assertion): The H.C.F. of two numbers is 16 and their product is 3072. Then their L.C.M. = 162. Statement R(Reason): If a and b are two positive integers, then H.C.F. × L.C.M. = a × b.	1

	 (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false. 	
	(d) Assertion (A) is false but reason (R) is true.	
20	Statement A (Assertion): :The distance point P(2,3) from the x-axis is 3. Statement R(Reason) : : The distance from x-axis is equal to its ordinary.	1
	 (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A) (b) Both assertion (A) and reason (R) are true and reason (R) is not the correct explanation of assertion (A) (c) Assertion (A) is true but reason (R) is false. 	
	(d) Assertion (A) is false but reason (R) is true.	
	SECTION B	
G N	Section B consists of 5 questions of 2 marks each.	3.6
S.No. 21	If $x = a$, $y = b$ is the solution of the pair of equation $x - y = 2$ and $x + y = 4$,	Marks 2
21	then find the value of a and b.	2
22	.In the figure, $DE AC$ and $DF AE$. Prove that $BF/FE = BE/EC$	2
	B F E C	
23	Prove that the tangent drawn at the mid-point of an arc of a circle is parallel to the chord joining the end points of the arc.	2
24	Find the area of the segment of a circle of radius 14cm if the length of the corresponding arc is 22cm. OR	2
	A horse is tethered to one corner of a field ,which is in the shape of an equilateral triangle of side 12m. If the length of the rope is 7m, find the area of the field the horse cannot graze. A 12cm A 12cm C	
25	If $x = p \sec \theta + q \tan \theta$ and $y = p \tan \theta + q \sec \theta$, then prove that $x^2 - y^2 = p^2 - q^2$.	2
	OR	
	If $5 \sin \theta = 4$, prove that $\frac{1}{\cos \theta} + \frac{1}{\cot \theta} = 3$	
	SECTION C	
L	1 ~= 0 3 x ,	l

	Section C consists of 6 questions of 3 marks each.	
S. No	•	Marks
26	Given that $\sqrt{2}$ is irrational, prove that $5 + 2\sqrt{2}$ is irrational.	3
27	Q2 If the sum of the zeros of the quadratic polynomial $ky^2 + 2y - 3k$ is equal to twice their product, find k.	3
28	Students are made to stand in rows. If one student is extra in a row there would be 2 rows less. If one student is less in a row there would*be 3 rows more. Find the number of students in the class. OR The owner of a taxi company decides to run all the taxis on CNG fuel instead of petrol/diesel. The taxi charges in city comprises of fixed charges together with the charge for the distance covered. For a journey of 12 km, the charge paid is 789 and for journey of 20 km, the charge paid is ₹145. What will a person have to pay for travelling a distance of 30 km?	3
29	Prove that: $\frac{SinA - CosA}{SinA + CosA} + \frac{SinA + CosA}{SinA - CosA} = \frac{2}{2Sin^2A - 1}$	3
30	InthefigureXYandX'Y'aretwoparalleltangentstoacirclewithcentreOandanother tangent AB with point of contact C interesting XY at A and X'Y' at B, what is the measure of∠AOB. OR	3
31	 4. A bag contains 12 marbles out of which y are white. i) If one marble is drawn at random from the box, what is the probability that it will be white marble? ii) If 6 more white marbles are put in the bag, the probability of drawing a white marble will double as in (i), so, find y 	3
	SECTION D	
G 37	Section D consists of 4 questions of 5 marks each.	N
S. No		Marks
32	A train, travelling at a uniform speed for 360 km, would have taken 48 minutes less to travel the same distance if its speed were 5 km/h more. Find the original speed of the train. OR A cyclist ,after riding a certain distance ,stopped for half an hour to repair	5

	his bicycle, after which he completes the hole journey of 30 km at half speed in 5 hours, If If the breakdown have occurred 10 km farther off, he would have done the whole journey in 4 hours. Find where the breakdown occurred and the original speed			
33	Prove that if a line is drawn parallel to one side of a triangle intersecting the other two sides in distinct points, then the other two sides are divided in the same ratio. By using the above theorem if in a triangle PQ is parallel to MN . If KP/PM= 4/13 , KN = 20.4 CM ,then find KQ			
34	A solid toy is in the form of a hemisphere surmounted by a right circular cone. The height of the cone is 4 cm and diameter of the base is 8 cm. Determine the volume of the toy. If a cube circumscribes the toy, then find the difference of the volume of cube and the toy. Also find the total surface area of the toy.			
	A farmer runs a pipe of internal diameter 20 cm from a canal into a cylindrical tank in his field which is 10 m in diameter and 2 m deep. If water flows through the pipe at the rate of 3 Km/h, in how much time tank be filled?			
35	1. Find the values of x and y if the med 31and sum of the frequencies is 40.	ian of the following data is	5	
	Classes Interval Fi	requency		
	0-10 5			
	10-20 X			
	20-30 6			
	30-40 Y			
	40-50 6			
	50-60 5			
	TOTAL 40			
	SECTION E			
S. No	Case study based questions	аге сошривогу.	Marks	
36	. A stable owner has four horses. He usually tie these horses with 7m long rope to pegs at each corner of a square shaped gross field of 20m length, to graze in his farm. But tying with rope sometimes results in injuries to his horses, so he decided to built fence around each horse and let them freely move and graze separately in their own area.			

Based on the above, find the following:

- (i). The total area of the field in which these horses can graze . (π =22/7)
- ii. How much the length of the rope of each horse be increased so that they can graze in maximum area without encroaching in each other's area.

OR

What is the area of the field that is un-grazed after increasing the length of the rope ?

(iii). If the length of the rope is increased as per part (ii) above , find the cost of fencing

A group of students of class X visited India Gate on an education trip. The

teacher and students had interest in history as well. The teacher narrated that India Gate, official name Delhi Memorial, originally called All-India War Memorial, monumentalsandstone arch in New Delhi, dedicated to the troops of British India who died in wars fought between 1914 and 1919. The teacher also said that India Gate, which is located at the eastern end of the Rajpath (formerly called the Kingsway), is about 138 feet (42 metres) in height.

- (i) What is the angle of elevation if they are standing at a distance of 42m awayfrom the monument?
- (ii) If the altitude of the Sun is at 60°, then the height of the vertical tower that willcast a shadow of length 20 m is

OR

The ratio of the length of a rod and its shadow is 1:1. The angle of elevation of the Sun is

1+2+1

	(iii) The angle formed by the line of sight with the horizontal when the object viewdis below the horizontal level is	
38	India is competitive manufacturing location due to the low cost of manpower and strong technical and engineering capabilities contributing to higher quality production runs. The production of TV sets in a factory increases uniformly by a fixed number every year. It produced 16000 sets in 6th year and 22600 in 9th year. Based on the above information, answer the following questions: (i) Find the production during 8th year. (ii) Find the production during first 3 years. OR In which year, the production is Rs 29,200. (iii) Find the difference of the production during 7th year and 4th year.	1+2+1

KENDRIYA VIDYALAYA SANGATHAN, JAMMU REGION

SAMPLE PAPER SET- 15

CLASS - X

SUBJECT- MATHS (STD)

TIME – 3 HOURS

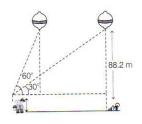
M.M-80 MARKS

- (i) This question paper has 5 section A-E.
- (ii) Section A has 20 MCQs carrying 1 mark each
- (iii) Section B has 5 questions carrying 02 marks each
- (iv) Section C has 6 questions carrying 03 marks each
- (v) Section D has 4 questions carrying 05 marks each.
- (vi) Section E has 3 case based integrated units of assessment (04 marks each) with subparts of the values of 1, 1 and 2 marks each respectively.
- (vii) All questions are compulsory. However, an internal choice in 2Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E.
- (viii) Draw neat figures wherever required. Take π =22/7 wherever required if not stated.

	Section A			
Q1	If the HCF of 35 and 45 is 5, LCM of 35 and 45 is 63 x a. The value of a is			
	a) 5 b) 10 c) 15 d) 0			
Q2	If the discriminant of the equation $6x^2$ -bx+2=0 is 1, then value of b is			
	a) +7 b)-7 c) both of them d) none			
Q3	If α , β are the zeros of a polynomial $f(x) = px^2-2x+3p$ and $\alpha + \beta = \alpha\beta$. The p is			
	a) $\frac{-2}{3}$ b) $\frac{2}{3}$ c) $\frac{1}{3}$ d) $\frac{-1}{3}$			
Q4	The value of k, for which the pair of linear equations $x + y - 4 = 0$ and $2x + ky-3=0$ is inconsistent.			
	a) 0 b) 2 c) 6 d) 8			
Q5	The distance of point p (2, 3) from x-axis is			
	a) 2 b) 3 c) 1 d) 5			
Q6	Two polygons of the same number of sides are similar, if their corresponding sides are			
	a) equal b) proportional c) Both a & b d) None of these			
Q7	If $\sin\theta$ -Cos θ = 0. Then value of θ is			

	a) 30° b) 0° c) 45° d) 60°				
Q8	If $x = 2 \sin^2 \theta$ and $y = 2 \cos^2 \theta + 1$. Then value of $x + y$ is				
	a) 2 b) 3 c) 4 d) 5				
Q9	For which natural number n, 6 ⁿ ends with digit zero?				
	a) 6 b) 5 c) 0 d) none of these				
Q10	Is any sequence defined by $a_n=2n^2+1$ forms an AP?				
	a) Yes b) No c) Cannot be determined d) None of these				
Q11	The point which divides the line segment joining the points (7, -6) and (3, 4) in the ratio 1:2 internally lies in the				
	a) 1 st Quadrant b) 2 nd Quadrant c) 3 rd Quadrant d) 4 th Quadrant				
Q12	In $\triangle ABC$ and $\triangle DEF$, $\angle B = \angle E$, $\angle F = \angle C$ and $AB = 3DE$. Then the two triangles are				
	 a) Congruent but not similar b) Similar but not congruent c) Neither congruent not similar d) Congruent as well as similar 				
Q13	In a given figure a circle touches all the four sides of a quadrilateral ABCD with AB = 6cm, BC = 7cm, CD = 4cm then length of AD is				
	a) 3cm b) 4cm d) 5cm d) 6cm				
Q14	If the perimeter of a circle is equal to that of a square, then the ratio of their areas is				
	a) 22:7 b) 14:11 c) 7: 22 d) 11:14				
Q15	An arc of a circle is of length 5π cm and the sector it bounds has an area of 20π cm ² then radius of the circle is				
	a) 4cm b) 8cm c) 12 cm d) 16cm				
Q16	A Surahi is the combination of				
	a) a sphere and a cyclinderb) a hemisphere and a conec) two hemisphere				

	d) a cylinder and a cone				
Q17	Assertion (A): If P (E) = 0.35, then probability of not E is 0.65 Reasoning (R): For any event E, $0 \le P(E) \le 1$				
	a) Both A and R are true and R is correct explanation for Ab) Both A and R are true and R is not correct explanation for A				
	c) (A) is false But (R) is true d) (A) is true But R is false				
010					
Q18	If the difference of mode and median of a data is 24, then the difference of median and mean is				
	a) 12 b) 24 c) 8 d) 36				
Q19	The cumulative frequency table is useful in determining				
	a) Mean b) median c) mode d) All of these				
Q20	Assertion (A) : $\sqrt{5}$ is an irrational number				
	(R): Square root of a prime number is rational.				
	a) Both A and R are true and R is correct explanation for A.				
	b) Both A and R are true and R is not correct explanation for A				
	c) (A) is false But (R) is true				
	d) (A) is true But R is false				
	Section B (2 Marks each)				
Q21	Solve the following pair of linear equations				
	41x+53y=135				
	53x+41y=147				
	Or				
	Find the value of k for which the following system of equations has infinitely many solutions				
	x + (k+1) y = 5				
	(k+1) x + 9y = 8k-1				
Q22	In the given figure, $\triangle ODC \sim \triangle OBA$, $\triangle BOC = 125^{\circ}$ and $\triangle CDO = 70^{\circ}$, Find $\triangle DOC$, $\triangle DCO$ and $\triangle OAB$.				


	D C				
	$ \begin{array}{c} $				
	Andrew Control				
Q23	In the given figure, XY and X'Y' are two parallel tangents to a circle with Centre O and another tangent AB with point of contact C intersecting XY at A and X'Y' at B. Prove that∠AOB=90°.				
	X P A Y O C Y Q B				
Q24	If $\cot \theta = 3x - \frac{1}{12x}$, show that				
	$\cot \theta + \operatorname{Cosec} \theta = 6x \text{ or } -\frac{1}{6x}$				
	Or				
	If Sin θ +2 Cos θ =1, prove that 2 Sin θ -Cos θ =2.				
Q25	A chord of a circle of radius 10cm subtends a right angle at the centre. Find the area of the corresponding				
	(i) Minor segment (ii) Major segment. (Take π =31.4)				
	Section C (3 Marks each)				
Q26	Prove that $6-2\sqrt{3}$ is irrational				
	or				
	Prove that $\sqrt{5}$ is irrational				
Q27	Find the zeroes of a quadratic polynomial x^2 -5x+6 and verify the relationship between the zeroes and the coefficient				
Q28	Solve the following quadratic equation				
	$\frac{x-1}{x-2} + \frac{x-3}{x-4} = 3\frac{1}{3}$				

Q29	Prove the identity		
	$(Sin A + Cosec A)^2 + (Cos A + Sec A)^2$		
	$= 7 + \tan^2 A + \cot^2 A$		
	Or		
	$(\operatorname{Cosec} \theta - \operatorname{Cot} \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta}$		
Q30	In ΔPQR , right angled at Q, PR+QR=25 cm and PQ=5cm. Determine the values of Sin P, Cos P and tan P.		
Q31	Two customers, Shyam and Ekta are visiting a particular shop in the same week (Tuesday to Saturday). Each is equally likely to visit the shop on any day as on another day		
	What is the probability that both will visit the shop on		
	(i) The same day?(ii) Consecutive days?		
	(iii) Different days		
	Section D (5 marks each)		
Q32	Yash scored 40 marks in a test, getting 3 marks for each right answer and losing 1 mark for each wrong answer. Had 4 marks been awarded for each incorrect answer, then Yash would have scored 50 marks. How many questions were there in the test?		
	Or		
	Places A and B are 100km apart on a highway. One car starts from A and another from B at the same time. If the cars travel in the same direction at different speeds, they meet in 5h. If they travel towards each other, they meet in 1h. What are the speeds of the two cars?		
Q33	a) State and Prove Thale's theorm b) In Fig. A, B and C are points on OP, OQ and OR respectively such that AB PQ and AC PR. Show that BC QR.		

Q34 From the top of a 7m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.

Or

A 1.2m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60° . After sometime, the angle of elevation reduces to 30° (see the figure). Find the distance travelled by the balloon during the interval.

Q35 Water in a canal, 6m wide and 1.5m deep is flowing with a speed of 10km/h. How much area will it irrigate in 30min, if 8 cm of standing water is needed?

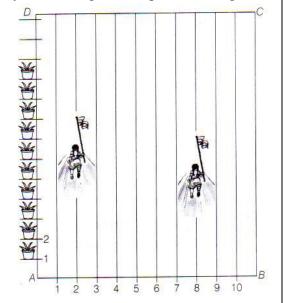
Section E (4 marks each)

Q36 India is competitive manufacturing location due to the low cost of manpower and strong technical engineering capabilities contributing to higher quality production runs. The production of TV sets in factory a increases uniformly by a fixed number every year. It produced 16000 sets in 6th year and 22600 in 9th year.

Based on the above information, answer the following questions

- (i) Find the production during first year.
- (ii) Find the production during 8th year.
- (iii) Find the production during first 3 years

or


(iv) In which year, the production is Rs. 29200.

ABCD, lines have been drawn with chalk powder at a distance of 1 m each, 100 flower pots have been placed at a distance of 1m from each other along AD, as

shown in figure.

Seeta runs $\frac{1}{4}$ th the distance AD on the 2nd line and posts a green flag. Geeta runs $\frac{1}{5}$ th the distance AD on the 8th line and posts a red flag.

Answer the following questions which are based on above figure.

- (i) Write the coordinates of green flag.
- (ii) Write the coordinates of red flag
- (iii) Find the distance between both the flags.

or

(iv)If Rashmi has to post a blue flag exactly half way between the line segment joining the flags, then find the coordinates of that point

Q38 A Tesla car manufacturing industry wants to declare the mileage of their electric cars. For this, they recorded the mileage (km/charge) of 100 cars of the same model. Details of which are given in the following table

Mileage (km/charge)	100-120	120-140	140-160	160-180
Number of Cars	14	24	36	26

Based on the above information, anwer the following questions.

- (i) Find the average mileage of above data
- (ii) The modal value of the given data is
- (iii) The median value of the given data is